from array import array from functools import cached_property from typing import (Any, Dict, Iterable, List, Literal, Mapping, Optional, Tuple, TypedDict) import torch import torch.nn.functional as F from PIL import Image from torch import nn from transformers import ChameleonConfig, ChameleonVQVAEConfig from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig, MultiModalConfig from aphrodite.common.sequence import IntermediateTensors, SequenceData from aphrodite.common.utils import print_warning_once from aphrodite.constants import APHRODITE_TOKEN_ID_ARRAY_TYPE from aphrodite.distributed import get_tensor_model_parallel_world_size from aphrodite.inputs import INPUT_REGISTRY, InputContext, LLMInputs from aphrodite.modeling.layers.activation import SiluAndMul from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler, SamplerOutput from aphrodite.modeling.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import ( default_weight_loader, row_parallel_weight_loader) from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.modeling.utils import set_weight_attrs from aphrodite.multimodal import MULTIMODAL_REGISTRY from aphrodite.multimodal.utils import (cached_get_tokenizer, repeat_and_pad_placeholder_tokens) from aphrodite.quantization.base_config import QuantizationConfig from .interfaces import SupportsMultiModal # These configs are not part of the model config but the preprocessor # and processor files, so we hardcode them in the model file for now. CHAMELEON_CROP_SIZE_HEIGHT = CHAMELEON_CROP_SIZE_WIDTH = 512 CHAMELEON_IMAGE_SEQ_LENGTH = 1024 CHAMELEON_IMAGE_TOKEN_ID = 8711 CHAMELEON_IMAGE_START_TOKEN_ID = 8197 CHAMELEON_IMAGE_END_TOKEN_ID = 8196 CHAMELEON_SEP_TOKEN_ID = 8710 class ChameleonImagePixelInputs(TypedDict): type: Literal["pixel_values"] data: torch.Tensor """Shape: `(batch_size * num_images, num_channels, height, width)`""" def get_max_chameleon_image_tokens(ctx: InputContext): return CHAMELEON_IMAGE_SEQ_LENGTH def dummy_seq_data_for_chameleon( seq_len: int, num_images: int, *, image_token_id: int, image_feature_size_override: Optional[int] = None, ): if image_feature_size_override is None: image_feature_size = CHAMELEON_IMAGE_SEQ_LENGTH else: image_feature_size = image_feature_size_override token_ids = array(APHRODITE_TOKEN_ID_ARRAY_TYPE, [image_token_id]) * image_feature_size * num_images token_ids += array(APHRODITE_TOKEN_ID_ARRAY_TYPE, [0]) * (seq_len - image_feature_size * num_images) return SequenceData(token_ids) def dummy_image_for_chameleon( num_images: int, *, image_width_override: Optional[int] = None, image_height_override: Optional[int] = None, ): width = CHAMELEON_CROP_SIZE_WIDTH height = CHAMELEON_CROP_SIZE_HEIGHT if image_width_override is not None: width = image_width_override if image_height_override is not None: height = image_height_override image = Image.new("RGB", (width, height), color=0) return {"image": image if num_images == 1 else [image] * num_images} def dummy_data_for_chameleon(ctx: InputContext, seq_len: int, mm_counts: Mapping[str, int]): num_images = mm_counts["image"] seq_data = dummy_seq_data_for_chameleon( seq_len, num_images, image_token_id=CHAMELEON_IMAGE_TOKEN_ID, ) mm_data = dummy_image_for_chameleon(num_images) return seq_data, mm_data def input_processor_for_chameleon(ctx: InputContext, llm_inputs: LLMInputs): """ Processing input prompt to insert required tokens for image placeholder. See https://github.com/huggingface/transformers/blob/0fdea8607d7e01eb0e38a1ebeb7feee30a22f0cf/src/transformers/models/chameleon/processing_chameleon.py#L58 """ # noqa multi_modal_data = llm_inputs.get("multi_modal_data") if multi_modal_data is None or "image" not in multi_modal_data: return llm_inputs model_config = ctx.model_config tokenizer = cached_get_tokenizer(model_config.tokenizer) new_prompt, new_token_ids = repeat_and_pad_placeholder_tokens( tokenizer, llm_inputs.get("prompt"), llm_inputs["prompt_token_ids"], placeholder_token_id=CHAMELEON_IMAGE_TOKEN_ID, repeat_count=CHAMELEON_IMAGE_SEQ_LENGTH, pad_token_left=CHAMELEON_IMAGE_START_TOKEN_ID, pad_token_right=CHAMELEON_IMAGE_END_TOKEN_ID, ) # Appending sep token for chat mode to follow default processor # behavior if new_prompt is not None: new_prompt += tokenizer.sep_token new_token_ids += [CHAMELEON_SEP_TOKEN_ID] # NOTE: Create a defensive copy of the original inputs return LLMInputs(prompt_token_ids=new_token_ids, prompt=new_prompt, multi_modal_data=multi_modal_data) class ChameleonLayerNorm(nn.LayerNorm): def __init__(self, hidden_size, *args, **kwargs): super().__init__(hidden_size, *args, **kwargs) self.normalized_shape = (hidden_size[-1], ) set_weight_attrs(self.weight, {"weight_loader": row_parallel_weight_loader}) set_weight_attrs(self.bias, {"weight_loader": row_parallel_weight_loader}) def forward(self, hidden_states): hidden_states = F.layer_norm(hidden_states, self.normalized_shape, None, None, eps=1e-5) hidden_states = hidden_states * self.weight + self.bias return hidden_states # Copied from aphrodite.modeling.models.llama.LlamaMLP -> ChameleonMLP class ChameleonMLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, bias: bool = False, ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( input_size=hidden_size, output_sizes=[intermediate_size] * 2, bias=bias, quant_config=quant_config) self.down_proj = RowParallelLinear(input_size=intermediate_size, output_size=hidden_size, bias=bias, quant_config=quant_config) if hidden_act != "silu": raise ValueError(f"Unsupported activation: {hidden_act}. " "Only silu is supported for now.") self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x # Modified from aphrodite.modeling.models.llama.LlamaAttention -> ChameleonAttention #noqa class ChameleonAttention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, max_position_embeddings: int = 4096, quant_config: Optional[QuantizationConfig] = None, bias: bool = False, cache_config: Optional[CacheConfig] = None, ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.qkv_proj = QKVParallelLinear( hidden_size=hidden_size, head_size=self.head_dim, total_num_heads=self.total_num_heads, total_num_kv_heads=self.total_num_kv_heads, bias=bias, quant_config=quant_config, ) self.o_proj = RowParallelLinear( input_size=self.total_num_heads * self.head_dim, output_size=hidden_size, bias=bias, quant_config=quant_config, ) self.q_norm = ChameleonLayerNorm((self.num_heads, self.head_dim)) self.k_norm = ChameleonLayerNorm((self.num_kv_heads, self.head_dim)) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, ) self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config) def _apply_qk_norm(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # reshape for layernorm q = q.reshape(-1, self.num_heads, self.head_dim) k = k.reshape(-1, self.num_kv_heads, self.head_dim) q = self.q_norm(q) k = self.k_norm(k) q = q.view(*q.shape[:-2], -1) k = k.view(*k.shape[:-2], -1) return q, k def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self._apply_qk_norm(q, k) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.o_proj(attn_output) return output class ChameleonDecoderLayer(nn.Module): def __init__( self, config: ChameleonConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) if rope_scaling is not None and getattr( config, "original_max_position_embeddings", None): rope_scaling["original_max_position_embeddings"] = ( config.original_max_position_embeddings) max_position_embeddings = getattr(config, "max_position_embeddings", 4096) self.self_attn = ChameleonAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=getattr(config, "num_key_value_heads", config.num_attention_heads), rope_theta=rope_theta, rope_scaling=rope_scaling, max_position_embeddings=max_position_embeddings, quant_config=quant_config, bias=False, cache_config=cache_config, ) self.mlp = ChameleonMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, bias=getattr(config, "mlp_bias", False), ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm( hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class ChameleonSwinDecoderLayer(nn.Module): def __init__( self, config: ChameleonConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) if rope_scaling is not None and getattr( config, "original_max_position_embeddings", None): rope_scaling["original_max_position_embeddings"] = ( config.original_max_position_embeddings) max_position_embeddings = getattr(config, "max_position_embeddings", 4096) self.self_attn = ChameleonAttention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=getattr(config, "num_key_value_heads", config.num_attention_heads), rope_theta=rope_theta, rope_scaling=rope_scaling, max_position_embeddings=max_position_embeddings, quant_config=quant_config, bias=False, cache_config=cache_config, ) self.mlp = ChameleonMLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, bias=getattr(config, "mlp_bias", False), ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: residual = hidden_states hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) hidden_states = self.input_layernorm(hidden_states) hidden_states = hidden_states + residual # Fully Connected residual = hidden_states hidden_states = self.mlp(hidden_states) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = residual + hidden_states return hidden_states, residual # Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEVectorQuantizer #noqa class ChameleonVQVAEVectorQuantizer(nn.Module): def __init__(self, config: ChameleonVQVAEConfig): super().__init__() self.num_embeddings = config.num_embeddings self.embedding_dim = config.embed_dim self.beta = getattr(config, "beta", 0.25) self.embedding = nn.Embedding(self.num_embeddings, self.embedding_dim) self.re_embed = self.num_embeddings def forward(self, hidden_state: torch.Tensor): hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous() hidden_state_flattened = hidden_state.view(-1, self.embedding_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z distances = ( torch.sum(hidden_state_flattened**2, dim=1, keepdim=True) + torch.sum(self.embedding.weight**2, dim=1) - 2 * torch.einsum("bd,dn->bn", hidden_state_flattened, self.embedding.weight.transpose(0, 1))) min_encoding_indices = torch.argmin(distances, dim=1) hidden_state_quant = self.embedding(min_encoding_indices).view( hidden_state.shape) # compute loss for embedding loss = torch.mean((hidden_state_quant.detach() - hidden_state)** 2) + self.beta * torch.mean( (hidden_state_quant - hidden_state.detach())**2) # preserve gradients hidden_state_quant = hidden_state + (hidden_state_quant - hidden_state).detach() # reshape back to match original input shape hidden_state_quant = hidden_state_quant.permute(0, 3, 1, 2).contiguous() return hidden_state_quant, loss, min_encoding_indices # Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoderConvDownsample #noqa class ChameleonVQVAEEncoderConvDownsample(nn.Module): def __init__(self, in_channels: int): super().__init__() self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, hidden_states: torch.Tensor): # no asymmetric padding in torch conv, must do it ourselves hidden_states = F.pad(hidden_states, pad=(0, 1, 0, 1), mode="constant", value=0) hidden_states = self.conv(hidden_states) return hidden_states # Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoderResnetBlock #noqa class ChameleonVQVAEEncoderResnetBlock(nn.Module): def __init__( self, config: ChameleonVQVAEConfig, in_channels: int, out_channels=None, conv_shortcut=False, ): super().__init__() self.in_channels = in_channels self.out_channels = in_channels if out_channels is None \ else out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.norm2 = torch.nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True) self.dropout = torch.nn.Dropout(config.dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states: torch.Tensor): residual = hidden_states hidden_states = self.norm1(hidden_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.conv1(hidden_states) hidden_states = self.norm2(hidden_states) hidden_states *= torch.sigmoid(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.in_channels != self.out_channels: if self.use_conv_shortcut: residual = self.conv_shortcut(residual) else: residual = self.nin_shortcut(residual) return residual + hidden_states # Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoderAttnBlock #noqa class ChameleonVQVAEEncoderAttnBlock(nn.Module): def __init__(self, in_channels: int): super().__init__() self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states: torch.Tensor): residual = hidden_states hidden_states = self.norm(hidden_states) query_states = self.q(hidden_states) key_states = self.k(hidden_states) value_states = self.v(hidden_states) # compute attention batch_size, channels, height, width = query_states.shape query_states = query_states.reshape(batch_size, channels, height * width).permute(0, 2, 1) key_states = key_states.reshape(batch_size, channels, height * width) attn_weights = torch.bmm(query_states, key_states) attn_weights = attn_weights * (int(channels)**(-0.5)) attn_weights = F.softmax(attn_weights, dim=2) # attend to values value_states = value_states.reshape(batch_size, channels, height * width) attn_weights = attn_weights.permute(0, 2, 1) attn_output = torch.bmm(value_states, attn_weights).reshape(batch_size, channels, height, width) attn_output = self.proj_out(attn_output) return residual + attn_output # Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoder #noqa class ChameleonVQVAEEncoder(nn.Module): def __init__(self, config: ChameleonVQVAEConfig): super().__init__() self.num_resolutions = len(config.channel_multiplier) self.num_res_blocks = config.num_res_blocks base_channels = config.base_channels resolution = config.resolution in_channels = config.in_channels double_latent = config.double_latent latent_channels = config.latent_channels channel_multiplier = config.channel_multiplier self.conv_in = torch.nn.Conv2d(in_channels, base_channels, kernel_size=3, stride=1, padding=1) curr_res = resolution in_channel_multiplier = (1, ) + tuple(channel_multiplier) self.in_channel_multiplier = in_channel_multiplier self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = base_channels * in_channel_multiplier[i_level] block_out = base_channels * channel_multiplier[i_level] for i_block in range(self.num_res_blocks): block.append( ChameleonVQVAEEncoderResnetBlock( config=config, in_channels=block_in, out_channels=block_out, )) block_in = block_out if (config.attn_resolutions is not None and curr_res in config.attn_resolutions and config.attn_type == "vanilla"): attn.append(ChameleonVQVAEEncoderAttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = ChameleonVQVAEEncoderConvDownsample(block_in) curr_res = curr_res // 2 self.down.append(down) self.mid = nn.Module() self.mid.block_1 = ChameleonVQVAEEncoderResnetBlock( config=config, in_channels=block_in, out_channels=block_in, ) self.mid.attn_1 = ChameleonVQVAEEncoderAttnBlock( block_in) if config.attn_type == "vanilla" else nn.Identity() self.mid.block_2 = ChameleonVQVAEEncoderResnetBlock( config=config, in_channels=block_in, out_channels=block_in, ) self.norm_out = torch.nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True) self.conv_out = torch.nn.Conv2d( block_in, 2 * latent_channels if double_latent else latent_channels, kernel_size=3, stride=1, padding=1, ) def forward(self, pixel_values: torch.Tensor): pixel_values = pixel_values.to(self.conv_in.weight.dtype) # downsampling hidden_states = [self.conv_in(pixel_values)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): hidden_state = self.down[i_level].block[i_block]( hidden_states[-1], ) if len(self.down[i_level].attn) > 0: hidden_state = self.down[i_level].attn[i_block]( hidden_state) hidden_states.append(hidden_state) if i_level != self.num_resolutions - 1: hidden_states.append(self.down[i_level].downsample( hidden_states[-1])) # middle last_hidden_state = hidden_states[-1] last_hidden_state = self.mid.block_1(last_hidden_state) last_hidden_state = self.mid.attn_1(last_hidden_state) last_hidden_state = self.mid.block_2(last_hidden_state) # end last_hidden_state = self.norm_out(last_hidden_state) last_hidden_state *= torch.sigmoid(last_hidden_state) last_hidden_state = self.conv_out(last_hidden_state) return last_hidden_state # Adapted from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAE #noqa class ChameleonVQVAE(nn.Module): def __init__(self, config: ChameleonVQVAEConfig): super().__init__() self.encoder = ChameleonVQVAEEncoder(config) self.quantize = ChameleonVQVAEVectorQuantizer(config) self.quant_conv = torch.nn.Conv2d(config.latent_channels, config.embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(config.embed_dim, config.latent_channels, 1) self.eval() # Chameleon's VQ model is frozen def encode( self, pixel_values: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: hidden_states = self.encoder(pixel_values) hidden_states = self.quant_conv(hidden_states) quant, emb_loss, indices = self.quantize(hidden_states) return quant, emb_loss, indices # Copied from transformers.models.chameleon.modeling_chameleon.ChameleonImageVocabularyMapping #noqa class ChameleonImageVocabularyMapping: """ A class for mapping discrete image tokens from VQGAN to BPE tokens. """ def __init__(self, vocab_map: Dict[str, int]): self.vocab_map = vocab_map self.image_token_id = vocab_map.get("") @cached_property def val2name(self): return {v: k for k, v in self.vocab_map.items()} @cached_property def image_tokens(self): return sorted([ val for name, val in self.vocab_map.items() if name.startswith("IMGIMG") ]) @cached_property def bpe2img(self): img_tkn_chr_mapping = {chr(ord("A") + i): str(i) for i in range(10)} def remap(old_name: str) -> str: return "".join( img_tkn_chr_mapping.get(c, c) for c in old_name[len("IMGIMG"):-1]) return { tok: int(remap(self.val2name[tok])) for tok in self.image_tokens } @cached_property def img2bpe(self): return {v: k for k, v in self.bpe2img.items()} @cached_property def bpe2img_search_tensors(self): return torch.tensor(sorted(self.bpe2img.keys())), torch.tensor( sorted(self.bpe2img.values())) @cached_property def img2bpe_mapping_tensor(self): mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int) for k, v in self.img2bpe.items(): mapping[k] = v return mapping def convert_img2bpe(self, img_batch: torch.Tensor) -> torch.Tensor: device = img_batch.device img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")] return img_tokens.to(device) class ChameleonModel(nn.Module): def __init__( self, config: ChameleonConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( self.vocab_size, config.hidden_size, ) self.vocabulary_mapping = ChameleonImageVocabularyMapping( config.vocabulary_map) decoder_layer = ChameleonDecoderLayer if not self.config.swin_norm \ else ChameleonSwinDecoderLayer self.layers = nn.ModuleList([ decoder_layer(config=config, cache_config=cache_config, quant_config=quant_config) for _ in range(config.num_hidden_layers) ]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.vqmodel = ChameleonVQVAE(config.vq_config) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def get_image_tokens(self, pixel_values: torch.Tensor) -> torch.Tensor: """ Tokenizes images into discrete tokens with VQGAN module. Converts obtained image tokens into BPE tokens and wraps with "boi" and "eoi" special tokens. """ batch_size = pixel_values.shape[0] _, _, image_toks = self.vqmodel.encode(pixel_values) bpe_toks = self.vocabulary_mapping.convert_img2bpe(image_toks) bpe_toks = bpe_toks.view(batch_size, -1) return bpe_toks def forward( self, input_ids: Optional[torch.Tensor], positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, inputs_embeds: Optional[torch.Tensor] = None, ) -> torch.Tensor: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, kv_caches[i], attn_metadata, residual, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states @MULTIMODAL_REGISTRY.register_image_input_mapper() @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_chameleon_image_tokens) @INPUT_REGISTRY.register_dummy_data(dummy_data_for_chameleon) @INPUT_REGISTRY.register_input_processor(input_processor_for_chameleon) class ChameleonForConditionalGeneration(nn.Module, SupportsMultiModal): def __init__( self, config: ChameleonConfig, multimodal_config: MultiModalConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.config = config self.multimodal_config = multimodal_config self.model = ChameleonModel(config, cache_config, quant_config) self.unpadded_vocab_size = config.vocab_size self.lm_head = ParallelLMHead( self.unpadded_vocab_size, config.hidden_size, ) if config.tie_word_embeddings: self.lm_head.weight = self.model.embed_tokens.weight logit_scale = getattr(config, "logit_scale", 1.0) self.logits_processor = LogitsProcessor(self.unpadded_vocab_size, config.vocab_size, logit_scale) self.sampler = Sampler() def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor: expected_dims = (3, CHAMELEON_CROP_SIZE_HEIGHT, CHAMELEON_CROP_SIZE_WIDTH) actual_dims = tuple(data.shape[1:]) if actual_dims != expected_dims: expected_expr = ("batch_size", *map(str, expected_dims)) raise ValueError( f"The expected shape of pixel values is {expected_expr}. " f"You supplied {tuple(data.shape)}.") return data def _parse_and_validate_image_input( self, **kwargs: object) -> Optional[ChameleonImagePixelInputs]: pixel_values = kwargs.pop("pixel_values", None) if pixel_values is None: return None if not isinstance(pixel_values, torch.Tensor): raise ValueError("Incorrect type of pixel values. " f"Got type: {type(pixel_values)}") # Remove the N dimension until multiple images are supported. pixel_values = pixel_values.squeeze(1) return ChameleonImagePixelInputs( type="pixel_values", data=self._validate_pixel_values(pixel_values), ) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, **kwargs, ) -> torch.Tensor: image_input = self._parse_and_validate_image_input(**kwargs) if image_input is not None: assert self.model.vqmodel is not None image_tokens = self.model.get_image_tokens(image_input["data"].to( self.config.torch_dtype)) image_token_id = self.model.vocabulary_mapping.image_token_id special_image_mask = input_ids == image_token_id image_tokens = image_tokens.to(input_ids.device, input_ids.dtype) input_ids = input_ids.masked_scatter(special_image_mask, image_tokens) hidden_states = self.model(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) # Disallow image tokens which does not include special # begin-image and end-image tokens if logits is not None: image_tokens = self.model.vocabulary_mapping.image_tokens logits[:, image_tokens] = torch.finfo(logits.dtype).min return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) (".qkv_proj", ".q_proj", "q"), (".qkv_proj", ".k_proj", "k"), (".qkv_proj", ".v_proj", "v"), (".gate_up_proj", ".gate_proj", 0), (".gate_up_proj", ".up_proj", 1), ] params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue if ("rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name): # Models trained using ColossalAI may include these tensors in # the checkpoint. Skip them. continue # With tie_word_embeddings, we can skip lm_head.weight # The weight might appear unnecessarily in the files if the model is # processed with quantization, LoRA, fine-tuning, etc. if self.config.tie_word_embeddings and "lm_head.weight" in name: continue use_default_weight_loading = False if "vqmodel" in name: if self.model.vqmodel is not None: # We only do sharding for language model and # not vqvae for now. use_default_weight_loading = True else: for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Remapping the name of FP8 kv-scale. if name.endswith("kv_scale"): remapped_kv_scale_name = name.replace( ".kv_scale", ".attn.kv_scale") if remapped_kv_scale_name not in params_dict: print_warning_once( "Found kv scale in the checkpoint (e.g. " f"{name}), but not found the expected name in " f"the model (e.g. {remapped_kv_scale_name}). " "kv-scale is not loaded.") continue else: name = remapped_kv_scale_name param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) if use_default_weight_loading and name in params_dict: param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)