/* * Notice: This file was modified by Neuralmagic inc to include 8-bit support * * Copyright (C) 2024 Roberto Lopez Castro (roberto.lopez.castro@udc.es). All * Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "common/base.h" #include "../../../core/scalar_type.hpp" #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 #else #include "common/mem.h" #include "common/mma.h" #endif template inline std::string str(T x) { return std::to_string(x); } namespace marlin_24 { // 8 warps are a good choice since every SM has 4 schedulers and having more // than 1 warp per schedule allows some more latency hiding. At the same time, // we want relatively few warps to have many registers per warp and small tiles. static constexpr int THREADS = 256; static constexpr int STAGES = 4; static constexpr int min_thread_n = 128; static constexpr int tile_size = 16; static constexpr int max_par = 64; #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 template shared // fetch pipeline const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > __global__ void Marlin_24( const int4* __restrict__ A, // fp16 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn const int4* __restrict__ meta, // 2bit metadata information about 2:4 // format on B int4* __restrict__ C, // fp16 output buffer of shape mxn const int4* __restrict__ s, // fp16 quantization scales of shape // (k/groupsize)xn int prob_m, // batch dimension m int prob_n, // output dimension n int prob_k, // reduction dimension k int* locks // extra global storage for barrier synchronization ) {} torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_meta, torch::Tensor& b_scales, torch::Tensor& workspace, aphrodite::ScalarTypeTorchPtr const& b_q_type, int64_t size_m, int64_t size_n, int64_t size_k) { TORCH_CHECK_NOT_IMPLEMENTED( false, "gptq_marlin_24_gemm(..) requires CUDA_ARCH >= 8.0"); return torch::empty({1, 1}); } #else template shared // fetch pipeline const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > __global__ void Marlin_24( const int4* __restrict__ A, // fp16 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn const int4* __restrict__ meta, // 2bit metadata information about 2:4 // format on B int4* __restrict__ C, // fp16 output buffer of shape mxn const int4* __restrict__ s, // fp16 quantization scales of shape // (k/groupsize)xn int prob_m, // batch dimension m int prob_n, // output dimension n int prob_k, // reduction dimension k int* locks // extra global storage for barrier synchronization ) { // Each threadblock processes one "stripe" of the B matrix with (roughly) the // same size, which might involve multiple column "slices" (of width 16 * // `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM // example: // 0 1 3 // 0 2 3 // 1 2 4 // While this kind of partitioning makes things somewhat more complicated, it // ensures good utilization of all SMs for many kinds of shape and GPU // configurations, while requiring as few slow global cross-threadblock // reductions as possible. // For larger GEMMs we run multiple batchsize 64 versions in parallel for a // better partitioning with less reductions int parallel = 1; if (prob_m > 16 * thread_m_blocks) { parallel = prob_m / (16 * thread_m_blocks); prob_m = 16 * thread_m_blocks; } // number of thread_k_blocks in k-dim int k_tiles = prob_k / 32 / thread_k_blocks; // number of thread_n_blocks in n-dim int n_tiles = prob_n / 16 / thread_n_blocks; // iters needed to cover all slices int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x); // Ensure that the number of tiles in each stripe is a multiple of the // groupsize; this avoids an annoying special case where a stripe starts in // the middle of group. if (group_blocks != -1) iters = (group_blocks / thread_k_blocks) * ceildiv(iters, (group_blocks / thread_k_blocks)); int slice_row = (iters * blockIdx.x) % k_tiles; int slice_col_par = (iters * blockIdx.x) / k_tiles; int slice_col = slice_col_par; // number of threadblock tiles in the current slice int slice_iters; // total number of active threadblocks in the current slice int slice_count = 0; // index of threadblock in current slice; numbered bottom to top int slice_idx; // We can easily implement parallel problem execution by just remapping // indices and advancing global pointers if (slice_col_par >= n_tiles) { A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 8; C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8; locks += (slice_col_par / n_tiles) * n_tiles; slice_col = slice_col_par % n_tiles; } // Compute all information about the current slice which is required for // synchronization. auto init_slice = [&]() { slice_iters = iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row); if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0; if (slice_iters == 0) return; if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row; slice_count = 1; slice_idx = 0; int col_first = iters * ceildiv(k_tiles * slice_col_par, iters); if (col_first <= k_tiles * (slice_col_par + 1)) { int col_off = col_first - k_tiles * slice_col_par; slice_count = ceildiv(k_tiles - col_off, iters); if (col_off > 0) slice_count++; int delta_first = iters * blockIdx.x - col_first; if (delta_first < 0 || (col_off == 0 && delta_first == 0)) slice_idx = slice_count - 1; else { slice_idx = slice_count - 1 - delta_first / iters; if (col_off > 0) slice_idx--; } } if (slice_col == n_tiles) { A += 16 * thread_m_blocks * prob_k / 8; C += 16 * thread_m_blocks * prob_n / 8; locks += n_tiles; slice_col = 0; } }; init_slice(); // RLC: 8 is vec_size -> 128-bit instructions, 8 fp16 elements int a_gl_stride = prob_k / 8; // stride of the A matrix in global memory // stride of an A matrix tile in shared memory constexpr int a_sh_stride = 32 * thread_k_blocks / 8; // delta between subsequent A tiles in global memory constexpr int a_gl_rd_delta_o = 32 * thread_k_blocks / 8; // between subsequent accesses within a tile int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o); // between shared memory writes constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o); // between shared memory tile reads //RLC: 2 * #warps k-dim constexpr int a_sh_rd_delta_o = 4 * ((threads / 32) / (thread_n_blocks / 4)); // within a shared memory tile constexpr int a_sh_rd_delta_i = a_sh_stride * 16; // overall size of a tile constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks); // number of shared write iterations for a tile constexpr int a_sh_wr_iters = ceildiv(a_sh_stage, a_sh_wr_delta); constexpr int pack_factor = 32 / num_bits; int b_gl_stride = 16 * prob_n / (pack_factor * 4); constexpr int b_sh_stride = ((thread_n_blocks * 16) * 16 / pack_factor) / 4; constexpr int b_thread_vecs = num_bits == 4 ? 1 : 2; constexpr int b_sh_stride_threads = b_sh_stride / b_thread_vecs; int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks; int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride_threads); constexpr int b_sh_wr_delta = threads * b_thread_vecs; constexpr int b_sh_rd_delta = threads * b_thread_vecs; constexpr int b_sh_stage = b_sh_stride * thread_k_blocks; constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta; int m_gl_stride = 2 * prob_n / 8; // (16*2*4 / 8) = 16 constexpr int m_sh_stride = (16 * thread_n_blocks) / 4; // #warps n-dim * threads/warp int m_gl_rd_delta_o = m_gl_stride * thread_k_blocks; int m_gl_rd_delta_i = m_gl_stride * (threads / m_sh_stride); constexpr int m_sh_wr_delta = threads / 2; constexpr int m_sh_rd_delta = threads / 2; constexpr int m_sh_stage = m_sh_stride * thread_k_blocks; constexpr int m_sh_iters = ceildiv(m_sh_stage, m_sh_wr_delta); int s_gl_stride = prob_n / 8; constexpr int s_sh_stride = 16 * thread_n_blocks / 8; constexpr int s_sh_stage = s_sh_stride; int s_gl_rd_delta = s_gl_stride; // Global A read index of current thread. int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); a_gl_rd += a_gl_rd_delta_o * slice_row; // Shared write index of current thread. int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); // Shared read index. int a_sh_rd = a_sh_stride * ((threadIdx.x % 32) % 16) + (threadIdx.x % 32) / 16; a_sh_rd += 4 * ((threadIdx.x / 32) / (thread_n_blocks / 4)); int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride_threads) + (threadIdx.x % b_sh_stride_threads) * b_thread_vecs; b_gl_rd += b_sh_stride * slice_col; b_gl_rd += b_gl_rd_delta_o * slice_row; int b_sh_wr = threadIdx.x * b_thread_vecs; int b_sh_rd = threadIdx.x * b_thread_vecs; int m_gl_rd = m_gl_stride * (threadIdx.x / (m_sh_stride)) + (threadIdx.x % (m_sh_stride)); m_gl_rd += (m_sh_stride)*slice_col; m_gl_rd += m_gl_rd_delta_o * slice_row; int m_sh_wr = threadIdx.x; int m_sh_rd = threadIdx.x % 16 + (threadIdx.x / 32) * 16; int s_gl_rd; if constexpr (group_blocks == -1) { s_gl_rd = s_sh_stride * slice_col + threadIdx.x; } else { s_gl_rd = s_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) + s_sh_stride * slice_col + threadIdx.x; } int s_sh_wr = threadIdx.x; int s_sh_rd; // We use a different scale layout for grouped and column-wise quantization as // we scale a `half2` tile in column-major layout in the former and in // row-major in the latter case. if (group_blocks != -1) { s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + (threadIdx.x % 32) / 4; } else { s_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + (threadIdx.x % 32) / 4; } // Precompute which thread should not read memory in which iterations; this is // needed if there are more threads than required for a certain tilesize or // when the batchsize is not a multiple of 16. bool a_sh_wr_pred[a_sh_wr_iters]; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) { a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m; } bool s_sh_wr_pred = threadIdx.x < s_sh_stride; // To ensure that writing and reading A tiles to/from shared memory, the // latter in fragment format, is fully bank conflict free, we need to use a // rather fancy XOR-based layout. The key here is that neither reads nor // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the // same shared memory banks. Further, it seems (based on NSight-Compute) that // each warp must also write a consecutive memory segment? auto transform_a = [&](int i) { int row = i / a_gl_rd_delta_o; return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row; }; // Since the computation of this remapping is non-trivial and, due to our main // loop unrolls, all shared memory accesses are static, we simply precompute // both transformed reads and writes. int a_sh_wr_trans[a_sh_wr_iters]; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr); int a_sh_rd_trans[2][b_sh_wr_iters][thread_m_blocks]; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) { #pragma unroll for (int j = 0; j < thread_m_blocks; j++) { a_sh_rd_trans[0][i][j] = transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd); a_sh_rd_trans[1][i][j] = transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd + 2); } } // Since B-accesses have non-constant stride they have to be computed at // runtime; we break dependencies between subsequent accesses with a tile by // maintining multiple pointers (we have enough registers), a tiny // optimization. const int4* B_ptr[b_sh_wr_iters]; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd; bool m_sh_wr_pred = threadIdx.x < m_sh_wr_delta; const int4* meta_ptr[m_sh_iters]; #pragma unroll for (int i = 0; i < m_sh_iters; i++) meta_ptr[i] = meta + m_gl_rd_delta_i * i + m_gl_rd; extern __shared__ int4 sh[]; // Shared memory storage for global fetch pipelines. int4* sh_a = sh; int4* sh_b = sh_a + (stages * a_sh_stage); int4* sh_s = sh_b + (stages * b_sh_stage); int4* sh_m = sh_s + (stages * s_sh_stage); // Register storage for double buffer of shared memory reads. FragA frag_a[2][thread_m_blocks][2]; I4 frag_b_quant[2][b_thread_vecs]; FragM frag_m[2][2]; FragC frag_c[thread_m_blocks][4][2]; FragS frag_s[2][4]; // Zero accumulators. auto zero_accums = [&]() { #pragma unroll for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++) reinterpret_cast(frag_c)[i] = 0; }; // Asynchronously fetch the next A, B and s tile from global to the next // shared memory pipeline location. auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) { if (pred) { int4* sh_a_stage = sh_a + a_sh_stage * pipe; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) { cp_async4_pred( &sh_a_stage[a_sh_wr_trans[i]], &A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off], a_sh_wr_pred[i]); } int4* sh_b_stage = sh_b + b_sh_stage * pipe; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) { #pragma unroll for (int j = 0; j < b_thread_vecs; j++) { cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr + j], B_ptr[i] + j); } B_ptr[i] += b_gl_rd_delta_o; } int4* sh_meta_stage = sh_m + m_sh_stage * pipe; #pragma unroll for (int i = 0; i < m_sh_iters; i++) { if (m_sh_wr_pred) cp_async4(&sh_meta_stage[m_sh_wr_delta * i + m_sh_wr], meta_ptr[i]); meta_ptr[i] += m_gl_rd_delta_o; } // Only fetch scales if this tile starts a new group if constexpr (group_blocks != -1) { // This assumes group_blocks >= thread_k_blocks // and would need to be modified to support smaller groups. static_assert(group_blocks >= thread_k_blocks); if (pipe % (group_blocks / thread_k_blocks) == 0) { int4* sh_s_stage = sh_s + s_sh_stage * pipe; if (s_sh_wr_pred) cp_async4(&sh_s_stage[s_sh_wr], &s[s_gl_rd]); s_gl_rd += s_gl_rd_delta; } } } // Insert a fence even when we are winding down the pipeline to ensure that // waiting is also correct at this point. cp_async_fence(); }; // Wait until the next thread tile has been loaded to shared memory. auto wait_for_stage = [&]() { // We only have `stages - 2` active fetches since we are double buffering // and can only issue the next fetch when it is guaranteed that the previous // shared memory load is fully complete (as it may otherwise be // overwritten). cp_async_wait(); __syncthreads(); }; // Load the next sub-tile from the current location in the shared memory pipe // into the current register buffer. auto fetch_to_registers = [&](int k, int pipe) { // It may seem inefficient that we reload the groups for every sub-tile; // however, this does not seem to be a significant bottleneck, while some // theoretically better attempts have lead to bad instruction ordering by // the compiler and correspondingly a noticeable drop in performance. if constexpr (group_blocks != -1) { // This assumes group_blocks >= thread_k_blocks // and would need to be modified to support smaller groups. static_assert(group_blocks >= thread_k_blocks); int4* sh_s_stage = sh_s + s_sh_stage * ((group_blocks / thread_k_blocks) * (pipe / (group_blocks / thread_k_blocks))); reinterpret_cast(&frag_s[k % 2])[0] = sh_s_stage[s_sh_rd]; } int4* sh_a_stage = sh_a + a_sh_stage * pipe; #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { ldsm4(frag_a[k % 2][i][0], &sh_a_stage[a_sh_rd_trans[0][k % b_sh_wr_iters][i]]); ldsm4(frag_a[k % 2][i][1], &sh_a_stage[a_sh_rd_trans[1][k % b_sh_wr_iters][i]]); } int4* sh_b_stage = sh_b + b_sh_stage * pipe; #pragma unroll for (int i = 0; i < b_thread_vecs; i++) { frag_b_quant[k % 2][i] = *reinterpret_cast( &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd + i]); } // Load meta with ldsm4 int4* sh_m_stage = sh_m + m_sh_stage * pipe; ldsm4_m(frag_m[k % 2][0], &sh_m_stage[m_sh_rd_delta * (k % m_sh_iters) + m_sh_rd]); }; // Execute the actual tensor core matmul of a sub-tile. auto matmul = [&](int k) { // We have the m dimension as the inner loop in order to encourage overlapping // dequantization and matmul operations. #pragma unroll for (int j = 0; j < 4; j++) { FragB frag_b0; FragB frag_b1; if constexpr (num_bits == 4) { int b_quant = frag_b_quant[k % 2][0][j]; int b_quant_shift = b_quant >> 8; frag_b0 = dequant_4bit(b_quant); frag_b1 = dequant_4bit(b_quant_shift); } else { int* frag_b_quant_ptr = reinterpret_cast(frag_b_quant[k % 2]); int b_quant_0 = frag_b_quant_ptr[j * 2 + 0]; int b_quant_1 = frag_b_quant_ptr[j * 2 + 1]; frag_b0 = dequant_8bit(b_quant_0); frag_b1 = dequant_8bit(b_quant_1); } // If there are no groups, we can just scale the final output once and can // avoid doing so for each weight. if constexpr (group_blocks != -1) { scale(frag_b0, frag_s[k % 2][j], 0); } if constexpr (group_blocks != -1) { scale(frag_b1, frag_s[k % 2][j], 1); } #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { mma_sp(frag_b0, frag_b1, frag_a[k % 2][i][0], frag_c[i][j][0], frag_m[k % 2][j / 2], j % 2); } } }; // Since we slice across the k dimension of a tile in order to increase the // number of warps while keeping the n dimension of a tile reasonable, we have // multiple warps that accumulate their partial sums of the same output // location; which we have to reduce over in the end. We do in shared memory. auto thread_block_reduce = [&]() { constexpr int red_off = threads / b_sh_stride_threads / 2; if (red_off >= 1) { int red_idx = threadIdx.x / b_sh_stride_threads; constexpr int red_sh_stride = b_sh_stride_threads * 4 * 2; constexpr int red_sh_delta = b_sh_stride_threads; int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride_threads) + (threadIdx.x % b_sh_stride_threads); // Parallel logarithmic shared memory reduction. We make sure to avoid any // unnecessary read or write iterations, e.g., for two warps we write only // once by warp 1 and read only once by warp 0. #pragma unroll for (int m_block = 0; m_block < thread_m_blocks; m_block++) { #pragma unroll for (int i = red_off; i > 0; i /= 2) { if (i <= red_idx && red_idx < 2 * i) { #pragma unroll for (int j = 0; j < 4 * 2; j++) { int red_sh_wr = red_sh_delta * j + (red_sh_rd - red_sh_stride * i); if (i < red_off) { float* c_rd = reinterpret_cast(&sh[red_sh_delta * j + red_sh_rd]); float* c_wr = reinterpret_cast(&sh[red_sh_wr]); #pragma unroll for (int k = 0; k < 4; k++) reinterpret_cast(frag_c)[4 * 2 * m_block + j][k] += c_rd[k] + c_wr[k]; } sh[red_sh_wr] = reinterpret_cast(&frag_c)[4 * 2 * m_block + j]; } } __syncthreads(); } if (red_idx == 0) { #pragma unroll for (int i = 0; i < 4 * 2; i++) { float* c_rd = reinterpret_cast(&sh[red_sh_delta * i + red_sh_rd]); #pragma unroll for (int j = 0; j < 4; j++) reinterpret_cast(frag_c)[4 * 2 * m_block + i][j] += c_rd[j]; } } __syncthreads(); } } }; // Since multiple threadblocks may process parts of the same column slice, we // finally have to globally reduce over the results. As the striped // partitioning minimizes the number of such reductions and our outputs are // usually rather small, we perform this reduction serially in L2 cache. auto global_reduce = [&](bool first = false, bool last = false) { // We are very careful here to reduce directly in the output buffer to // maximize L2 cache utilization in this step. To do this, we write out // results in FP16 (but still reduce with FP32 compute). constexpr int active_threads = 32 * thread_n_blocks / 4; if (threadIdx.x < active_threads) { int c_gl_stride = prob_n / 8; int c_gl_wr_delta_o = 2 * 4 * c_gl_stride; int c_gl_wr_delta_i = c_gl_stride; // 8 threads (e.g., 0,4,8,12,16,20,24,28) int c_gl_wr = 2 * c_gl_stride * (threadIdx.x % 4) + 8 * (threadIdx.x / 32) + (threadIdx.x % 32) / 4; c_gl_wr += (2 * thread_n_blocks) * slice_col; constexpr int c_sh_wr_delta = active_threads; int c_sh_wr = threadIdx.x; int col = 2 * ((threadIdx.x % 32) % 4); if (!first) { // Interestingly, doing direct global accesses here really seems to mess up // the compiler and lead to slowdowns, hence we also use async-copies even // though these fetches are not actually asynchronous. #pragma unroll for (int i = 0; i < thread_m_blocks * 4; i++) { cp_async4_pred(&sh[c_sh_wr + c_sh_wr_delta * i], &C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)], i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + col + (i % 2) < prob_m); } cp_async_fence(); cp_async_wait<0>(); } #pragma unroll for (int i = 0; i < thread_m_blocks * 4; i++) { if (i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + col + (i % 2) < prob_m) { if (!first) { int4 c_red = sh[c_sh_wr + i * c_sh_wr_delta]; #pragma unroll for (int j2 = 0; j2 < 2; j2++) { #pragma unroll for (int j1 = 0; j1 < 4; j1++) { reinterpret_cast( &frag_c)[4 * 2 * 4 * (i / 4) + 8 * j1 + 2 * j2 + 4 * ((i % 4) / 2) + i % 2] += __half2float( reinterpret_cast<__half*>(&c_red)[(j2 * 4 + j1)]); } } } if (!last) { int4 c; #pragma unroll for (int j2 = 0; j2 < 2; j2++) { #pragma unroll for (int j1 = 0; j1 < 4; j1++) { reinterpret_cast<__half*>(&c)[(j2 * 4 + j1)] = __float2half(reinterpret_cast( &frag_c)[4 * 2 * 4 * (i / 4) + 8 * j1 + 2 * j2 + 4 * ((i % 4) / 2) + i % 2]); } } C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)] = c; } } } } }; // Write out the reduce final result in the correct layout. We only actually // reshuffle matrix fragments in this step, the reduction above is performed // in fragment layout. auto write_result = [&]() { int c_gl_stride = prob_n / 8; constexpr int c_sh_stride = 2 * thread_n_blocks; // RLC: constexpr int c_sh_stride_2 = 2 * c_sh_stride + 2; // RLC: constexpr int c_sh_stride_3 = 2 * (2 * thread_n_blocks) + 2; // RLC: int c_gl_wr_delta = c_gl_stride * (threads / (2 * thread_n_blocks)); int c_gl_wr = c_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) + (threadIdx.x % (2 * thread_n_blocks)); c_gl_wr += (2 * thread_n_blocks) * slice_col; int c_sh_wr = c_sh_stride_2 * ((threadIdx.x % 32) % 4) + ((threadIdx.x % 32) / 4); // RLC: c_sh_wr += 8 * (threadIdx.x / 32); // 128/4(half4) constexpr int c_sh_rd_delta = c_sh_stride_3 * (threads / (2 * 2 * thread_n_blocks)); // RLC: int c_sh_rd = c_sh_stride_3 * (threadIdx.x / (2 * 2 * thread_n_blocks)) + (threadIdx.x % (2 * 2 * thread_n_blocks)); int c_gl_wr_end = c_gl_stride * prob_m; auto write = [&](int idx, float c0, float c1, float c2, float c3, FragS& s0, float c4, float c5, float c6, float c7, FragS& s1) { uint2 res[2]; res[0] = to_half4(c0, c1, c2, c3); res[1] = to_half4(c4, c5, c6, c7); half2* tmp = (half2*)&res; // for per-column quantization we finally apply the scale here if constexpr (group_blocks == -1 && num_bits == 4) { tmp[0] = __hmul2(tmp[0], s0[0]); tmp[1] = __hmul2(tmp[1], s0[1]); tmp[2] = __hmul2(tmp[2], s1[0]); tmp[3] = __hmul2(tmp[3], s1[1]); } ((int4*)sh)[idx] = *((int4*)&res[0]); }; // RLC: only warp 0 and 1 baseline example if (threadIdx.x / 32 < thread_n_blocks / 4) { #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { int wr = c_sh_wr; write(wr, frag_c[i][0][0][0], frag_c[i][1][0][0], frag_c[i][2][0][0], frag_c[i][3][0][0], frag_s[0][0], frag_c[i][0][0][2], frag_c[i][1][0][2], frag_c[i][2][0][2], frag_c[i][3][0][2], frag_s[0][2]); write(wr + c_sh_stride, frag_c[i][0][0][1], frag_c[i][1][0][1], frag_c[i][2][0][1], frag_c[i][3][0][1], frag_s[0][0], frag_c[i][0][0][3], frag_c[i][1][0][3], frag_c[i][2][0][3], frag_c[i][3][0][3], frag_s[0][2]); write(wr + 4 * c_sh_stride_2, frag_c[i][0][1][0], frag_c[i][1][1][0], frag_c[i][2][1][0], frag_c[i][3][1][0], frag_s[0][0], frag_c[i][0][1][2], frag_c[i][1][1][2], frag_c[i][2][1][2], frag_c[i][3][1][2], frag_s[0][2]); write(wr + 4 * c_sh_stride_2 + c_sh_stride, frag_c[i][0][1][1], frag_c[i][1][1][1], frag_c[i][2][1][1], frag_c[i][3][1][1], frag_s[0][0], frag_c[i][0][1][3], frag_c[i][1][1][3], frag_c[i][2][1][3], frag_c[i][3][1][3], frag_s[0][2]); c_sh_wr += 8 * c_sh_stride_2; } } __syncthreads(); #pragma unroll for (int i = 0; i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks)); i++) { if (c_gl_wr < c_gl_wr_end) { C[c_gl_wr] = sh[c_sh_rd]; c_gl_wr += c_gl_wr_delta; c_sh_rd += c_sh_rd_delta; } } }; // Start global fetch and register load pipelines. auto start_pipes = [&]() { #pragma unroll for (int i = 0; i < stages - 1; i++) fetch_to_shared(i, i, i < slice_iters); zero_accums(); wait_for_stage(); fetch_to_registers(0, 0); a_gl_rd += a_gl_rd_delta_o * (stages - 1); }; start_pipes(); // Main loop. while (slice_iters) { // We unroll over both the global fetch and the register load pipeline to // ensure all shared memory accesses are static. Note that both pipelines have // even length meaning that the next iteration will always start at index 0. #pragma unroll for (int pipe = 0; pipe < stages;) { fetch_to_shared((pipe + stages - 1) % stages, pipe, slice_iters >= stages); matmul(pipe); wait_for_stage(); fetch_to_registers(pipe + 1, (pipe + 1) % stages); pipe++; slice_iters--; if (slice_iters == 0) break; } a_gl_rd += a_gl_rd_delta_o * stages; // Process results and, if necessary, proceed to the next column slice. // While this pattern may not be the most readable, other ways of writing // the loop seemed to noticeably worse performance after compilation. if (slice_iters == 0) { cp_async_wait<0>(); bool last = slice_idx == slice_count - 1; // For per-column scales, we only fetch them here in the final step before // write-out if constexpr (group_blocks == -1) { if constexpr (num_bits == 8) { if (s_sh_wr_pred) cp_async4(&sh_s[s_sh_wr], &s[s_gl_rd]); cp_async_fence(); } else { if (last) { if (s_sh_wr_pred) cp_async4(&sh_s[s_sh_wr], &s[s_gl_rd]); cp_async_fence(); } } } thread_block_reduce(); if constexpr (group_blocks == -1) { if constexpr (num_bits == 8) { cp_async_wait<0>(); __syncthreads(); if (threadIdx.x / 32 < thread_n_blocks / 4) { *(float4*)(frag_s) = *(float4*)(&sh_s[s_sh_rd]); } } else { if (last) { cp_async_wait<0>(); __syncthreads(); if (threadIdx.x / 32 < thread_n_blocks / 4) { *(float4*)(frag_s) = *(float4*)(&sh_s[s_sh_rd]); } } } } // For 8-bit channelwise, we apply the scale before the global reduction // that converts the fp32 results to fp16 (so that we avoid possible // overflow in fp16) if constexpr (group_blocks == -1 && num_bits == 8) { if (threadIdx.x / 32 < thread_n_blocks / 4) { #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { scale_floats(&frag_c[i][0][0][0], &frag_c[i][1][0][0], &frag_c[i][2][0][0], &frag_c[i][3][0][0], frag_s[0][0], &frag_c[i][0][0][2], &frag_c[i][1][0][2], &frag_c[i][2][0][2], &frag_c[i][3][0][2], frag_s[0][2]); scale_floats(&frag_c[i][0][0][1], &frag_c[i][1][0][1], &frag_c[i][2][0][1], &frag_c[i][3][0][1], frag_s[0][0], &frag_c[i][0][0][3], &frag_c[i][1][0][3], &frag_c[i][2][0][3], &frag_c[i][3][0][3], frag_s[0][2]); scale_floats(&frag_c[i][0][1][0], &frag_c[i][1][1][0], &frag_c[i][2][1][0], &frag_c[i][3][1][0], frag_s[0][0], &frag_c[i][0][1][2], &frag_c[i][1][1][2], &frag_c[i][2][1][2], &frag_c[i][3][1][2], frag_s[0][2]); scale_floats(&frag_c[i][0][1][1], &frag_c[i][1][1][1], &frag_c[i][2][1][1], &frag_c[i][3][1][1], frag_s[0][0], &frag_c[i][0][1][3], &frag_c[i][1][1][3], &frag_c[i][2][1][3], &frag_c[i][3][1][3], frag_s[0][2]); } } } if (slice_count > 1) { // only globally reduce if there is more than one // block in a slice barrier_acquire(&locks[slice_col], slice_idx); global_reduce(slice_idx == 0, last); barrier_release(&locks[slice_col], last); } if (last) // only the last block in a slice actually writes the result write_result(); slice_row = 0; slice_col_par++; slice_col++; init_slice(); if (slice_iters) { a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles; #pragma unroll for (int i = 0; i < m_sh_iters; i++) meta_ptr[i] += (m_sh_stride)-m_gl_rd_delta_o * k_tiles; if (slice_col == 0) { #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride; #pragma unroll for (int i = 0; i < m_sh_iters; i++) meta_ptr[i] -= m_gl_stride; } s_gl_rd = s_sh_stride * slice_col + threadIdx.x; start_pipes(); } } } } #endif #define CALL_IF_2_4(NUM_BITS, THREAD_M_BLOCKS, THREAD_N_BLOCKS, \ THREAD_K_BLOCKS, GROUP_BLOCKS) \ else if (num_bits == NUM_BITS && thread_m_blocks == THREAD_M_BLOCKS && \ thread_n_blocks == THREAD_N_BLOCKS && \ thread_k_blocks == THREAD_K_BLOCKS && \ group_blocks == GROUP_BLOCKS) { \ cudaFuncSetAttribute( \ Marlin_24, \ cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ Marlin_24 \ <<>>(A_ptr, B_ptr, meta_ptr, \ C_ptr, s_ptr, prob_n, \ prob_m, prob_k, locks); \ } void marlin_cuda_2_4(const void* A, const void* B, const void* meta, void* C, void* s, int prob_m, int prob_n, int prob_k, void* workspace, int num_bits, int groupsize = -1, int dev = 0, cudaStream_t stream = 0, int thread_k = -1, int thread_m = -1, int sms = -1, int max_par = 16) { int tot_n = prob_n; int tot_n_blocks = ceildiv(tot_n, 16); int pad = 16 * tot_n_blocks - tot_n; if (sms == -1) { cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev); } TORCH_CHECK(sms > 0); int max_shared_mem = 0; cudaDeviceGetAttribute(&max_shared_mem, cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); TORCH_CHECK(max_shared_mem > 0); if (thread_k == -1 || thread_m == -1) { if (prob_n <= 16) { // For small batchizes, better partitioningif is slightly more important // than better compute utilization thread_k = 128; thread_m = 128; } else if (prob_n <= 256) { thread_k = 64; thread_m = 256; } else { thread_k = 32; thread_m = 512; } } int thread_k_blocks = thread_k / 32; // 2:4 version with m16n8k32 instruction int thread_m_blocks = thread_m / 16; int group_blocks = (groupsize == -1) ? -1 : groupsize / 16; int blocks = sms; TORCH_CHECK(prob_m % thread_m == 0, "prob_m = ", prob_m, " is not divisible by thread_m = ", thread_m); TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k, " is not divisible by thread_k = ", thread_k); if (group_blocks != -1) { TORCH_CHECK((prob_k / 2) % group_blocks == 0, "prob_k/2 = ", prob_k / 2, " is not divisible by group_blocks = ", group_blocks); } TORCH_CHECK(prob_m > 0 && prob_n > 0 && prob_k > 0, "Invalid MNK = [", prob_m, ", ", prob_n, ", ", prob_k, "]"); const int4* A_ptr = (const int4*)A; const int4* B_ptr = (const int4*)B; const int4* meta_ptr = (const int4*)meta; int4* C_ptr = (int4*)C; const int4* s_ptr = (const int4*)s; constexpr int max_m_blocks = 4; int* locks = (int*)workspace; for (int i = 0; i < tot_n_blocks; i += max_m_blocks) { int thread_n_blocks = tot_n_blocks - i; prob_n = tot_n - 16 * i; int par = 1; if (thread_n_blocks > max_m_blocks) { // Note that parallel > 1 currently only works for inputs without any // padding par = (16 * thread_n_blocks - pad) / (max_m_blocks * 16); if (par > max_par) par = max_par; prob_n = (max_m_blocks * 16) * par; i += max_m_blocks * (par - 1); thread_n_blocks = max_m_blocks; } // For compilation speed, we only define the kernel configurations that have // seemed useful (in terms of performance) in our testing, however many more // are, in principle, possible. // the false is start of the CALL_IF macros if (false) { } // BMxBNxBK, group // 4-bit CALL_IF_2_4(4, 8, 1, 4, -1) // e.g., 16x128x128 CALL_IF_2_4(4, 8, 1, 4, 4) // e.g., 16x128x128, 64 CALL_IF_2_4(4, 16, 1, 2, -1) // e.g., 16x256x64 CALL_IF_2_4(4, 16, 1, 2, 4) // e.g., 16x256x64, 64 CALL_IF_2_4(4, 16, 2, 2, -1) // e.g.. 32x256x64 CALL_IF_2_4(4, 16, 2, 2, 4) CALL_IF_2_4(4, 16, 3, 2, -1) CALL_IF_2_4(4, 16, 3, 2, 4) CALL_IF_2_4(4, 16, 4, 2, -1) CALL_IF_2_4(4, 16, 4, 2, 4) CALL_IF_2_4(4, 32, 1, 1, -1) // e.g., 16x256x64 CALL_IF_2_4(4, 32, 1, 1, 4) // e.g., 16x256x64, 64 CALL_IF_2_4(4, 32, 2, 1, -1) // e.g.. 32x256x64 CALL_IF_2_4(4, 32, 2, 1, 4) CALL_IF_2_4(4, 32, 3, 1, -1) CALL_IF_2_4(4, 32, 3, 1, 4) CALL_IF_2_4(4, 32, 4, 1, -1) CALL_IF_2_4(4, 32, 4, 1, 4) // 8-bit CALL_IF_2_4(8, 8, 1, 4, -1) // e.g., 16x128x128 CALL_IF_2_4(8, 8, 1, 4, 4) // e.g., 16x128x128, 64 CALL_IF_2_4(8, 16, 1, 2, -1) // e.g., 16x256x64 CALL_IF_2_4(8, 16, 1, 2, 4) // e.g., 16x256x64, 64 CALL_IF_2_4(8, 16, 2, 2, -1) // e.g.. 32x256x64 CALL_IF_2_4(8, 16, 2, 2, 4) CALL_IF_2_4(8, 16, 3, 2, -1) CALL_IF_2_4(8, 16, 3, 2, 4) CALL_IF_2_4(8, 16, 4, 2, -1) CALL_IF_2_4(8, 16, 4, 2, 4) CALL_IF_2_4(8, 32, 1, 1, -1) // e.g., 16x256x64 CALL_IF_2_4(8, 32, 1, 1, 4) // e.g., 16x256x64, 64 CALL_IF_2_4(8, 32, 2, 1, -1) // e.g.. 32x256x64 CALL_IF_2_4(8, 32, 2, 1, 4) CALL_IF_2_4(8, 32, 3, 1, -1) CALL_IF_2_4(8, 32, 3, 1, 4) CALL_IF_2_4(8, 32, 4, 1, -1) CALL_IF_2_4(8, 32, 4, 1, 4) else { throw std::runtime_error("Unsupported shapes: MKN = [" + str(prob_m) + ", " + str(prob_k) + ", " + str(prob_n) + "]" + ", groupsize = " + str(groupsize) + ", thread_m_blocks = " + str(thread_m_blocks) + ", thread_n_blocks = " + str(thread_n_blocks) + ", thread_k_blocks = " + str(thread_k_blocks)); } A_ptr += 16 * thread_n_blocks * (prob_k / 8) * par; C_ptr += 16 * thread_n_blocks * (prob_m / 8) * par; } } } // namespace marlin_24 torch::Tensor gptq_marlin_24_gemm(torch::Tensor& a, torch::Tensor& b_q_weight, torch::Tensor& b_meta, torch::Tensor& b_scales, torch::Tensor& workspace, aphrodite::ScalarTypeTorchPtr const& b_q_type, int64_t size_m, int64_t size_n, int64_t size_k) { // Verify num_bits TORCH_CHECK(*b_q_type == aphrodite::kU4B8 || *b_q_type == aphrodite::kU8B128, "num_bits must be uint4b8 or uint8b128. Got = ", b_q_type->str()); int pack_factor = 32 / b_q_type->size_bits(); // Verify M TORCH_CHECK(size_m == a.size(0), "Shape mismatch: a.size(0) = " + str(a.size(0)) + ", size_m = " + str(size_m)); // Verify K TORCH_CHECK(size_k == a.size(1), "Shape mismatch: a.size(1) = " + str(a.size(1)) + ", size_k = " + str(size_k)); TORCH_CHECK(size_k % marlin_24::tile_size == 0, "size_k = " + str(size_k) + " is not divisible by tile_size = " + str(marlin_24::tile_size)); TORCH_CHECK((size_k / marlin_24::tile_size / 2) == b_q_weight.size(0), "Shape mismatch: b_q_weight.size(0) = " + str(b_q_weight.size(0)) + ", size_k = " + str(size_k) + ", tile_size = " + str(marlin_24::tile_size)); // Verify N TORCH_CHECK(b_scales.size(1) == size_n, "b_scales.size(1) = " + str(b_scales.size(1)) + ", size_n = " + str(size_n)); TORCH_CHECK( b_q_weight.size(1) % marlin_24::tile_size == 0, "b_q_weight.size(1) = " + str(b_q_weight.size(1)) + " is not divisible by tile_size = " + str(marlin_24::tile_size)); int actual_size_n = (b_q_weight.size(1) / marlin_24::tile_size) * pack_factor; TORCH_CHECK( size_n == actual_size_n, "size_n = " + str(size_n) + ", actual_size_n = " + str(actual_size_n)); // Verify meta TORCH_CHECK(b_meta.size(0) == size_k / 8 / 2 / 2, "b_meta.size(0) = ", b_meta.size(0), " is not size_k / 8 / 2 / 2 = ", size_k / 8 / 2 / 2); TORCH_CHECK(b_meta.size(1) == size_n * 2, "b_meta.size(1) = ", b_meta.size(1), " is not size_n * 2 = ", size_n * 2); // Verify A device and strides TORCH_CHECK(a.device().is_cuda(), "A is not on GPU"); TORCH_CHECK(a.is_contiguous(), "A is not contiguous"); // Verify B device and strides TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU"); TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous"); // Verify b_meta device and strides TORCH_CHECK(b_meta.device().is_cuda(), "b_meta is not on GPU"); TORCH_CHECK(b_meta.is_contiguous(), "b_meta is not contiguous"); // Verify scales device and strides TORCH_CHECK(b_scales.device().is_cuda(), "b_scales is not on GPU"); TORCH_CHECK(b_scales.is_contiguous(), "b_scales is not contiguous"); // Alloc C matrix const at::cuda::OptionalCUDAGuard device_guard(device_of(a)); auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device()); torch::Tensor c = torch::empty({size_m, size_n}, options); int thread_k = -1; int thread_m = -1; int sms = -1; int max_par = marlin_24::max_par; int groupsize = -1; if (b_scales.size(0) > 1) { TORCH_CHECK(size_k % b_scales.size(0) == 0, "size_k = " + str(size_k) + ", is not divisible by b_scales.size(0) = " + str(b_scales.size(0))); groupsize = size_k / b_scales.size(0); groupsize /= 2; // Because of 24 } // Verify groupsize TORCH_CHECK(groupsize == -1 || groupsize == 64, "Unexpected groupsize = " + str(groupsize)); // Verify workspace size TORCH_CHECK(size_n % marlin_24::min_thread_n == 0, "size_n = " + str(size_n) + ", is not divisible by min_thread_n = " + str(marlin_24::min_thread_n)); int min_workspace_size = (size_n / marlin_24::min_thread_n) * marlin_24::max_par; TORCH_CHECK(workspace.numel() >= min_workspace_size, "workspace.numel = " + str(workspace.numel()) + " is below min_workspace_size = " + str(min_workspace_size)); int dev = a.get_device(); marlin_24::marlin_cuda_2_4( a.data_ptr(), b_q_weight.data_ptr(), b_meta.data_ptr(), c.data_ptr(), b_scales.data_ptr(), size_n, size_m, size_k, workspace.data_ptr(), b_q_type->size_bits(), groupsize, dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_m, sms, max_par); return c; }