/* * Adapted from * https://github.com/IST-DASLab/marlin/blob/master/marlin/marlin_cuda_kernel.cu * https://github.com/IST-DASLab/marlin/blob/master/marlin/marlin_cuda.cpp * Modified by HandH1998 * Copyright (C) 2024 HandH1998 * Copyright (C) Marlin.2024 Elias Frantar * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include "../dense/common/base.cuh" #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 #include "../dense/common/mem.cuh" #endif template inline std::string str(T x) { return std::to_string(x); } namespace { #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800 using I4 = Vec; // Matrix fragments for tensor core instructions; their precise layout is // documented here: // https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-fragments-for-mma-m16n8k16-with-integer-type using FragA = Vec; using FragB = Vec; using FragC = Vec; using FragS_GROUP = Vec; // weight per-group quantization scales using FragS_CHANNEL = Vec; // weight per-channel quantization scales or activaton // per-token quantization scales // NOTE: cp.async.cg only support BYTES = 16, however, // cp.async.ca can support BYTES = 4, 8, 16; // as s_tok's shape is equal to prob_m, we need set s_tok to float type, // and cp_size = 1 float, i.e., 4 BYTES // Asynchronous global->shared copy for activation quantizaton scales s_tok __device__ inline void cp_async1(void* smem_ptr, const void* glob_ptr) { const int BYTES = 4; uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); asm volatile( "{\n" " cp.async.ca.shared.global [%0], [%1], %2;\n" "}\n" ::"r"(smem), "l"(glob_ptr), "n"(BYTES)); } // m16n8k16 tensor core mma instruction with int8 inputs and int32 // output/accumulation. __device__ inline void mma(const FragA& a_frag, const FragB& frag_b, FragC& frag_c) { const uint32_t* a = reinterpret_cast(&a_frag); const uint32_t* b = reinterpret_cast(&frag_b); int* c = reinterpret_cast(&frag_c); asm volatile( "mma.sync.aligned.m16n8k16.row.col.satfinite.s32.s8.s8.s32 " "{%0,%1,%2,%3}, {%4,%5}, {%6}, {%7,%8,%9,%10};\n" : "=r"(c[0]), "=r"(c[1]), "=r"(c[2]), "=r"(c[3]) : "r"(a[0]), "r"(a[1]), "r"(b[0]), "r"(c[0]), "r"(c[1]), "r"(c[2]), "r"(c[3])); } // Instruction for loading a full 16x16 matrix fragment of operand A from shared // memory, directly in int8 tensor core layout. __device__ inline void ldsm4(FragA& frag_a, const void* smem_ptr) { uint32_t* a = reinterpret_cast(&frag_a); uint32_t smem = static_cast(__cvta_generic_to_shared(smem_ptr)); asm volatile("ldmatrix.sync.aligned.m8n8.x2.shared.b16 {%0,%1}, [%2];\n" : "=r"(a[0]), "=r"(a[1]) : "r"(smem)); } inline __device__ half2 float2_to_half2(float2 f) { uint32_t res; // NOTE: h0,h1 should be uint16_t, not half uint16_t h0, h1; asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(h0) : "f"(f.x)); asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(h1) : "f"(f.y)); asm volatile("mov.b32 %0, {%1, %2};\n" : "=r"(res) : "h"(h0), "h"(h1)); return reinterpret_cast(res); } inline __device__ float int32_to_float(int h) { float res; asm volatile("cvt.rn.f32.s32 %0, %1;\n" : "=f"(res) : "r"(h)); return res; } // Lookup-table based 3-input logical operation; explicitly used for // dequantization as the compiler does not seem to automatically recognize it in // all cases. template __device__ inline int lop3(int a, int b, int c) { int res; asm volatile("lop3.b32 %0, %1, %2, %3, %4;\n" : "=r"(res) : "r"(a), "r"(b), "r"(c), "n"(lut)); return res; } // Efficiently dequantize an int32 value into a full B-fragment of 4 int8 values // for weight per channel dequant. __device__ inline FragB dequant_per_channel(int q) { static constexpr int MASK = 0xf0f0f0f0; FragB frag_b; frag_b[0] = (q & MASK); return frag_b; } // Efficiently dequantize an int32 value into a full B-fragment of 4 int8 values // for weight per group dequant. __device__ inline FragB dequant_per_group(int q, FragS_GROUP& frag_s, int i) { static constexpr uint32_t LO = 0x000f000f; static constexpr uint32_t HI = 0x00f000f0; static constexpr uint32_t EX = 0x64006400; // Guarantee that the `(a & b) | c` operations are LOP3s. uint32_t t0 = lop3<(0xf0 & 0xcc) | 0xaa>(q, LO, EX); uint32_t t1 = lop3<(0xf0 & 0xcc) | 0xaa>(q, HI, EX); // We want signed int4 outputs, hence we fuse the `-8` symmetric zero point // directly into `SUB` and `ADD`. static constexpr uint32_t SUB = 0x64086408; static constexpr uint32_t MUL = 0x2c002c00; static constexpr uint32_t ADD = 0xd480d480; *reinterpret_cast(&t0) = __hsub2( *reinterpret_cast(&t0), *reinterpret_cast(&SUB)); *reinterpret_cast(&t1) = __hfma2( *reinterpret_cast(&t1), *reinterpret_cast(&MUL), *reinterpret_cast(&ADD)); uint16_t s = reinterpret_cast(&frag_s)[i]; uint32_t double_s; // pack 2xfp16 to half2 asm volatile("mov.b32 %0, {%1, %2};\n" : "=r"(double_s) : "h"(s), "h"(s)); // dequant and convert 4 half to 4 uint8 (be placed at the low 8 bits of 4 // half, respectively) static constexpr uint32_t MAGIC_NUM = 0x64806480; *reinterpret_cast(&t0) = __hfma2( *reinterpret_cast(&t0), *reinterpret_cast(&double_s), *reinterpret_cast(&MAGIC_NUM)); *reinterpret_cast(&t1) = __hfma2( *reinterpret_cast(&t1), *reinterpret_cast(&double_s), *reinterpret_cast(&MAGIC_NUM)); // take out the 4 uint8 from 4 half, then convert them to 4 int8 and pack 4 // int8 into 1 uint32 FragB frag_b; uint32_t uint8s; static constexpr uint32_t MASK_0246 = 0x6420; static constexpr uint32_t UINT8s_TO_INT8s_MASK = 0x80808080; asm volatile("prmt.b32 %0,%1,%2,%3;\n" : "=r"(uint8s) : "r"(t0), "r"(t1), "n"(MASK_0246)); frag_b[0] = (uint8s ^ UINT8s_TO_INT8s_MASK); return frag_b; } template shared // fetch pipeline const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > __global__ void Marlin( const int4* __restrict__ A, // int8 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn int4* __restrict__ C, // int32 global_reduce buffer of shape // (max_par*16*4)xn, as int8 tensor core's output is // int32 dtype int4* __restrict__ D, // fp16 output buffer of shape mxn const float* __restrict__ s_tok, // fp32 activation per-token quantization // scales of shape mx1 const int4* __restrict__ s_ch, // fp32 weight per-channel quantization // scales of shape 1xn const int4* __restrict__ s_group, // fp16 weight per-group quantization // scales of shape (k/groupsize)xn, when // group_blocks=-1, it should be nullptr int prob_m, // batch dimension m int prob_n, // output dimension n int prob_k, // reduction dimension k int* locks // extra global storage for barrier synchronization ) { // Each threadblock processes one "stripe" of the B matrix with (roughly) the // same size, which might involve multiple column "slices" (of width 16 * // `thread_n_blocks`). Stripes are defined as shown in the 3x3 matrix 5 SM // example: // 0 1 3 // 0 2 3 // 1 2 4 // While this kind of partitioning makes things somewhat more complicated, it // ensures good utilization of all SMs for many kinds of shape and GPU // configurations, while requiring as few slow global cross-threadblock // reductions as possible. // For larger GEMMs we run multiple batchsize 64 versions in parallel for a // better partitioning with less reductions int parallel = 1; if (prob_m > 16 * thread_m_blocks) { parallel = prob_m / (16 * thread_m_blocks); prob_m = 16 * thread_m_blocks; } int k_tiles = prob_k / 16 / thread_k_blocks; int n_tiles = prob_n / 16 / thread_n_blocks; int iters = ceildiv(k_tiles * n_tiles * parallel, gridDim.x); // Ensure that the number of tiles in each stripe is a multiple of the // groupsize; this avoids an annoying special case where a stripe starts in // the middle of group. if constexpr (group_blocks != -1) iters = (group_blocks / thread_k_blocks) * ceildiv(iters, (group_blocks / thread_k_blocks)); int slice_row = (iters * blockIdx.x) % k_tiles; int slice_col_par = (iters * blockIdx.x) / k_tiles; int slice_col = slice_col_par; int slice_iters; // number of threadblock tiles in the current slice int slice_count = 0; // total number of active threadblocks in the current slice int slice_idx; // index of threadblock in current slice; numbered bottom to // top // We can easily implement parallel problem execution by just remapping // indices and advancing global pointers if (slice_col_par >= n_tiles) { A += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_k / 16; C += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 4; D += (slice_col_par / n_tiles) * 16 * thread_m_blocks * prob_n / 8; s_tok += (slice_col_par / n_tiles) * 16 * thread_m_blocks; locks += (slice_col_par / n_tiles) * n_tiles; slice_col = slice_col_par % n_tiles; } // Compute all information about the current slice which is required for // synchronization. auto init_slice = [&]() { slice_iters = iters * (blockIdx.x + 1) - (k_tiles * slice_col_par + slice_row); if (slice_iters < 0 || slice_col_par >= n_tiles * parallel) slice_iters = 0; if (slice_iters == 0) return; if (slice_row + slice_iters > k_tiles) slice_iters = k_tiles - slice_row; slice_count = 1; slice_idx = 0; int col_first = iters * ceildiv(k_tiles * slice_col_par, iters); if (col_first <= k_tiles * (slice_col_par + 1)) { int col_off = col_first - k_tiles * slice_col_par; slice_count = ceildiv(k_tiles - col_off, iters); if (col_off > 0) slice_count++; int delta_first = iters * blockIdx.x - col_first; if (delta_first < 0 || (col_off == 0 && delta_first == 0)) slice_idx = slice_count - 1; else { slice_idx = slice_count - 1 - delta_first / iters; if (col_off > 0) slice_idx--; } } if (slice_col == n_tiles) { A += 16 * thread_m_blocks * prob_k / 16; C += 16 * thread_m_blocks * prob_n / 4; D += 16 * thread_m_blocks * prob_n / 8; s_tok += 16 * thread_m_blocks; locks += n_tiles; slice_col = 0; } }; init_slice(); int a_gl_stride = prob_k / 16; // stride of the A matrix in global memory // We typically use `constexpr` to indicate that this value is a compile-time // constant constexpr int a_sh_stride = 16 * thread_k_blocks / 16; // stride of an A matrix tile in shared memory constexpr int a_gl_rd_delta_o = 16 * thread_k_blocks / 16; // delta between subsequent A tiles in global memory int a_gl_rd_delta_i = a_gl_stride * (threads / a_gl_rd_delta_o); // between subsequent accesses within a tile constexpr int a_sh_wr_delta = a_sh_stride * (threads / a_gl_rd_delta_o); // between shared memory writes constexpr int a_sh_rd_delta_o = 1 * ((threads / 32) / (thread_n_blocks / 4)); // between shared memory tile reads constexpr int a_sh_rd_delta_i = a_sh_stride * 16; // within a shared memory tile constexpr int a_sh_stage = a_sh_stride * (16 * thread_m_blocks); // overall size of a tile constexpr int a_sh_wr_iters = ceildiv(a_sh_stage, a_sh_wr_delta); // number of shared write iterations for a tile int b_gl_stride = 16 * prob_n / 32; constexpr int b_sh_stride = 32 * thread_n_blocks / 4; int b_gl_rd_delta_o = b_gl_stride * thread_k_blocks; int b_gl_rd_delta_i = b_gl_stride * (threads / b_sh_stride); constexpr int b_sh_wr_delta = threads; constexpr int b_sh_rd_delta = threads; constexpr int b_sh_stage = b_sh_stride * thread_k_blocks; constexpr int b_sh_wr_iters = b_sh_stage / b_sh_wr_delta; constexpr int s_tok_sh_stride = 16 * thread_m_blocks; constexpr int s_ch_sh_stride = 16 * thread_n_blocks / 4; int s_group_gl_stride = prob_n / 8; constexpr int s_group_sh_stride = 16 * thread_n_blocks / 8; constexpr int s_group_sh_stage = s_group_sh_stride; int s_group_gl_rd_delta = s_group_gl_stride; // Global A read index of current thread. int a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); a_gl_rd += a_gl_rd_delta_o * slice_row; // Shared write index of current thread. int a_sh_wr = a_sh_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); // Shared read index. // NOTE: int8 input a only need 16 threads to load 16x16 matrix int a_sh_rd = a_sh_stride * ((threadIdx.x % 32) % 16); a_sh_rd += 1 * ((threadIdx.x / 32) / (thread_n_blocks / 4)); int b_gl_rd = b_gl_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride); b_gl_rd += b_sh_stride * slice_col; b_gl_rd += b_gl_rd_delta_o * slice_row; int b_sh_wr = threadIdx.x; int b_sh_rd = threadIdx.x; int s_tok_gl_rd = threadIdx.x; // NOTE: activation scale s_tok need shuffle to [0, 8, 1, 9, 2, 10, // 3, 11, 4, 12, 5, 13, 6, 14, 7, 15] for example, 0, 8 row scales serve for // thread 0, 1, 2, 3. For more details, refer to mma operand A layout as // s_tok's size is not fixed, we can not shuffle before inference we shuffle // it when fetching s_tok from global memory to shared memory, that's why // s_tok_sh_wr is like this int s_tok_sh_wr = (threadIdx.x / 16) * 16 + (threadIdx.x % 8) * 2 + (threadIdx.x % 16) / 8; int s_tok_sh_rd = (threadIdx.x % 32) / 4; bool s_tok_sh_wr_pred = threadIdx.x < prob_m; int s_ch_gl_rd = s_ch_sh_stride * slice_col + threadIdx.x; int s_ch_sh_wr = threadIdx.x; int s_ch_sh_rd = 16 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + 2 * ((threadIdx.x % 32) % 4); bool s_ch_sh_wr_pred = threadIdx.x < s_ch_sh_stride; int s_group_gl_rd, s_group_sh_wr, s_group_sh_rd; bool s_group_sh_wr_pred; if constexpr (group_blocks != -1) { s_group_gl_rd = s_group_gl_stride * ((thread_k_blocks * slice_row) / group_blocks) + s_group_sh_stride * slice_col + threadIdx.x; s_group_sh_wr = threadIdx.x; // NOTE: s_group_sh_rd is related to mma output C s_group_sh_rd = 8 * ((threadIdx.x / 32) % (thread_n_blocks / 4)) + (threadIdx.x % 32) / 4; s_group_sh_wr_pred = threadIdx.x < s_group_sh_stride; } // Precompute which thread should not read memory in which iterations; this is // needed if there are more threads than required for a certain tilesize or // when the batchsize is not a multiple of 16. bool a_sh_wr_pred[a_sh_wr_iters]; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) a_sh_wr_pred[i] = a_sh_wr_delta * i + a_sh_wr < a_sh_stride * prob_m; // To ensure that writing and reading A tiles to/from shared memory, the // latter in fragment format, is fully bank conflict free, we need to use a // rather fancy XOR-based layout. The key here is that neither reads nor // writes of the 16-byte `int4` blocks of 8 consecutive threads involve the // same shared memory banks. Further, it seems (based on NSight-Compute) that // each warp must also write a consecutive memory segment? auto transform_a = [&](int i) { int row = i / a_gl_rd_delta_o; return a_gl_rd_delta_o * row + (i % a_gl_rd_delta_o) ^ row; }; // Since the computation of this remapping is non-trivial and, due to our main // loop unrolls, all shared memory accesses are static, we simply precompute // both transformed reads and writes. int a_sh_wr_trans[a_sh_wr_iters]; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) a_sh_wr_trans[i] = transform_a(a_sh_wr_delta * i + a_sh_wr); int a_sh_rd_trans[b_sh_wr_iters][thread_m_blocks]; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) { #pragma unroll for (int j = 0; j < thread_m_blocks; j++) a_sh_rd_trans[i][j] = transform_a(a_sh_rd_delta_o * i + a_sh_rd_delta_i * j + a_sh_rd); } // Since B-accesses have non-constant stride they have to be computed at // runtime; we break dependencies between subsequent accesses with a tile by // maintining multiple pointers (we have enough registers), a tiny // optimization. const int4* B_ptr[b_sh_wr_iters]; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] = B + b_gl_rd_delta_i * i + b_gl_rd; extern __shared__ int4 sh[]; // Shared memory storage for global fetch pipelines. // NOTE: stages need >= 4, otherwise, sh_s_tok = sh + max(stages * // a_sh_stage + stages * b_sh_stage, 4 * stages * a_sh_stage) int4* sh_a = sh; int4* sh_b = sh_a + (stages * a_sh_stage); int4* sh_s_tok = sh_b + (stages * b_sh_stage); int4* sh_s_ch = sh_s_tok + s_tok_sh_stride; int4* sh_s_group = sh_s_ch + s_ch_sh_stride; // Register storage for double buffer of shared memory reads. FragA frag_a[2][thread_m_blocks]; I4 frag_b_quant[2]; FragC frag_c[thread_m_blocks][4][2]; FragS_GROUP frag_s_group[2][4]; FragS_CHANNEL frag_s_tok[thread_m_blocks]; FragS_CHANNEL frag_s_ch[2][4]; // Zero accumulators. auto zero_accums = [&]() { #pragma unroll for (int i = 0; i < thread_m_blocks * 4 * 2 * 4; i++) reinterpret_cast(frag_c)[i] = 0; }; // Asynchronously fetch the next A, B and s tile from global to the next // shared memory pipeline location. auto fetch_to_shared = [&](int pipe, int a_off, bool pred = true) { if (pred) { int4* sh_a_stage = sh_a + a_sh_stage * pipe; #pragma unroll for (int i = 0; i < a_sh_wr_iters; i++) { cp_async4_pred( &sh_a_stage[a_sh_wr_trans[i]], &A[a_gl_rd_delta_i * i + a_gl_rd + a_gl_rd_delta_o * a_off], a_sh_wr_pred[i]); } int4* sh_b_stage = sh_b + b_sh_stage * pipe; #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) { cp_async4(&sh_b_stage[b_sh_wr_delta * i + b_sh_wr], B_ptr[i]); B_ptr[i] += b_gl_rd_delta_o; } // Only fetch scales if this tile starts a new group if constexpr (group_blocks != -1) { if (pipe % (group_blocks / thread_k_blocks) == 0) { int4* sh_s_group_stage = sh_s_group + s_group_sh_stage * pipe; if (s_group_sh_wr_pred) cp_async4(&sh_s_group_stage[s_group_sh_wr], &s_group[s_group_gl_rd]); s_group_gl_rd += s_group_gl_rd_delta; } } } // Insert a fence even when we are winding down the pipeline to ensure that // waiting is also correct at this point. cp_async_fence(); }; // Wait until the next thread tile has been loaded to shared memory. auto wait_for_stage = [&]() { // We only have `stages - 2` active fetches since we are double buffering // and can only issue the next fetch when it is guaranteed that the previous // shared memory load is fully complete (as it may otherwise be // overwritten). cp_async_wait(); __syncthreads(); }; // Load the next sub-tile from the current location in the shared memory pipe // into the current register buffer. auto fetch_to_registers = [&](int k, int pipe) { // It may seem inefficient that we reload the groups for every sub-tile; // however, this does not seem to be a significant bottleneck, while some // theoretically better attempts have lead to bad instruction ordering by // the compiler and correspondingly a noticeable drop in performance. if constexpr (group_blocks != -1) { int4* sh_s_group_stage = sh_s_group + s_group_sh_stage * ((group_blocks / thread_k_blocks) * (pipe / (group_blocks / thread_k_blocks))); reinterpret_cast(&frag_s_group[k % 2])[0] = sh_s_group_stage[s_group_sh_rd]; } int4* sh_a_stage = sh_a + a_sh_stage * pipe; #pragma unroll for (int i = 0; i < thread_m_blocks; i++) ldsm4(frag_a[k % 2][i], &sh_a_stage[a_sh_rd_trans[k % b_sh_wr_iters][i]]); int4* sh_b_stage = sh_b + b_sh_stage * pipe; frag_b_quant[k % 2] = *reinterpret_cast( &sh_b_stage[b_sh_rd_delta * (k % b_sh_wr_iters) + b_sh_rd]); }; // Execute the actual tensor core matmul of a sub-tile. auto matmul = [&](int k) { // We have the m dimension as the inner loop in order to encourage overlapping // dequantization and matmul operations. #pragma unroll for (int j = 0; j < 4; j++) { int b_quant = frag_b_quant[k % 2][j]; // int b_quant_shift = b_quant << 4; FragB frag_b0, frag_b1; // If there are no groups, we can just scale the final output once and can // avoid doing so for each weight. if constexpr (group_blocks != -1) { int b_quant_shift = b_quant >> 8; frag_b0 = dequant_per_group(b_quant, frag_s_group[k % 2][j], 0); frag_b1 = dequant_per_group(b_quant_shift, frag_s_group[k % 2][j], 1); } else { int b_quant_shift = b_quant << 4; frag_b0 = dequant_per_channel(b_quant); frag_b1 = dequant_per_channel(b_quant_shift); } #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { mma(frag_a[k % 2][i], frag_b0, frag_c[i][j][0]); mma(frag_a[k % 2][i], frag_b1, frag_c[i][j][1]); } } }; // Since we slice across the k dimension of a tile in order to increase the // number of warps while keeping the n dimension of a tile reasonable, we have // multiple warps that accumulate their partial sums of the same output // location; which we have to reduce over in the end. We do in shared memory. auto thread_block_reduce = [&]() { constexpr int red_off = threads / b_sh_stride / 2; if (red_off >= 1) { int red_idx = threadIdx.x / b_sh_stride; constexpr int red_sh_stride = b_sh_stride * 4 * 2; constexpr int red_sh_delta = b_sh_stride; int red_sh_rd = red_sh_stride * (threadIdx.x / b_sh_stride) + (threadIdx.x % b_sh_stride); // Parallel logarithmic shared memory reduction. We make sure to avoid any // unnecessary read or write iterations, e.g., for two warps we write only // once by warp 1 and read only once by warp 0. #pragma unroll for (int m_block = 0; m_block < thread_m_blocks; m_block++) { #pragma unroll for (int i = red_off; i > 0; i /= 2) { if (i <= red_idx && red_idx < 2 * i) { #pragma unroll for (int j = 0; j < 4 * 2; j++) { int red_sh_wr = red_sh_delta * j + (red_sh_rd - red_sh_stride * i); if (i < red_off) { int* c_rd = reinterpret_cast(&sh[red_sh_delta * j + red_sh_rd]); int* c_wr = reinterpret_cast(&sh[red_sh_wr]); #pragma unroll for (int k = 0; k < 4; k++) reinterpret_cast(frag_c)[4 * 2 * m_block + j][k] += c_rd[k] + c_wr[k]; } sh[red_sh_wr] = reinterpret_cast(&frag_c)[4 * 2 * m_block + j]; } } __syncthreads(); } if (red_idx == 0) { #pragma unroll for (int i = 0; i < 4 * 2; i++) { int* c_rd = reinterpret_cast(&sh[red_sh_delta * i + red_sh_rd]); #pragma unroll for (int j = 0; j < 4; j++) reinterpret_cast(frag_c)[4 * 2 * m_block + i][j] += c_rd[j]; } } __syncthreads(); } } }; // Since multiple threadblocks may process parts of the same column slice, we // finally have to globally reduce over the results. As the striped // partitioning minimizes the number of such reductions and our outputs are // usually rather small, we perform this reduction serially in L2 cache. // global_reduce works on INT32 elements, which are the results of INT8 GEMM. // This is why we need another INT32 maxtrix `C` to reduce instead of the // original half matrix `D`. auto global_reduce = [&](bool first = false, bool last = false) { // We are very careful here to reduce directly in the output buffer to // maximize L2 cache utilization in this step. To do this, we write out // results in FP16 (but still reduce with FP32 compute). constexpr int active_threads = 32 * thread_n_blocks / 4; if (threadIdx.x < active_threads) { int c_gl_stride = prob_n / 4; int c_gl_wr_delta_o = 8 * c_gl_stride; int c_gl_wr_delta_i = 8 * (active_threads / 32); int c_gl_wr = c_gl_stride * ((threadIdx.x % 32) / 4) + 8 * (threadIdx.x / 32) + (threadIdx.x % 4) * 2; c_gl_wr += (4 * thread_n_blocks) * slice_col; constexpr int c_sh_wr_delta = active_threads * 2; int c_sh_wr = 2 * threadIdx.x; int row = (threadIdx.x % 32) / 4; if (!first) { // Interestingly, doing direct global accesses here really seems to mess up // the compiler and lead to slowdowns, hence we also use async-copies even // though these fetches are not actually asynchronous. #pragma unroll for (int i = 0; i < thread_m_blocks * 4; i++) { cp_async4_pred( &sh[c_sh_wr + c_sh_wr_delta * i], &C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)], i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m); cp_async4_pred( &sh[c_sh_wr + c_sh_wr_delta * i + 1], &C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2) + 1], i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m); } cp_async_fence(); cp_async_wait<0>(); } #pragma unroll for (int i = 0; i < thread_m_blocks * 4; i++) { if (i < (thread_m_blocks - 1) * 4 || 8 * (i / 2) + row < prob_m) { if (!first) { int4 d_red1 = sh[c_sh_wr + i * c_sh_wr_delta]; int4 d_red2 = sh[c_sh_wr + i * c_sh_wr_delta + 1]; #pragma unroll for (int j = 0; j < 4; j++) { reinterpret_cast( &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)] += reinterpret_cast(&d_red1)[j]; } #pragma unroll for (int j = 0; j < 4; j++) { reinterpret_cast( &frag_c)[4 * 2 * 4 * (i / 4) + 4 * (j + 4) + (i % 4)] += reinterpret_cast(&d_red2)[j]; } } if (!last) { int4 d1, d2; #pragma unroll for (int j = 0; j < 4; j++) { reinterpret_cast(&d1)[j] = reinterpret_cast( &frag_c)[4 * 2 * 4 * (i / 4) + 4 * j + (i % 4)]; } #pragma unroll for (int j = 0; j < 4; j++) { reinterpret_cast(&d2)[j] = reinterpret_cast( &frag_c)[4 * 2 * 4 * (i / 4) + 4 * (j + 4) + (i % 4)]; } C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2)] = d1; C[c_gl_wr + c_gl_wr_delta_o * (i / 2) + c_gl_wr_delta_i * (i % 2) + 1] = d2; } } } } }; // Write out the reduce final result in the correct layout. We only actually // reshuffle matrix fragments in this step, the reduction above is performed // in fragment layout. auto write_result = [&]() { int d_gl_stride = prob_n / 8; constexpr int d_sh_stride = 2 * thread_n_blocks + 1; int d_gl_wr_delta = d_gl_stride * (threads / (2 * thread_n_blocks)); constexpr int d_sh_rd_delta = d_sh_stride * (threads / (2 * thread_n_blocks)); int d_gl_wr = d_gl_stride * (threadIdx.x / (2 * thread_n_blocks)) + (threadIdx.x % (2 * thread_n_blocks)); d_gl_wr += (2 * thread_n_blocks) * slice_col; int d_sh_wr = (4 * d_sh_stride) * ((threadIdx.x % 32) / 4) + (threadIdx.x % 32) % 4; d_sh_wr += 32 * (threadIdx.x / 32); int d_sh_rd = d_sh_stride * (threadIdx.x / (2 * thread_n_blocks)) + (threadIdx.x % (2 * thread_n_blocks)); int d_gl_wr_end = d_gl_stride * prob_m; // We first reorder in shared memory to guarantee the most efficient final // global write patterns auto write = [&](int idx, int c0, int c1, float a_s, FragS_CHANNEL& w_s) { float2 deq_res; deq_res.x = int32_to_float(c0) * w_s[0] * a_s; deq_res.y = int32_to_float(c1) * w_s[1] * a_s; ((half2*)sh)[idx] = float2_to_half2(deq_res); }; if (threadIdx.x / 32 < thread_n_blocks / 4) { #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { #pragma unroll for (int j = 0; j < 4; j++) { int wr = d_sh_wr + 8 * j; write(wr + (4 * d_sh_stride) * 0 + 0, frag_c[i][j][0][0], frag_c[i][j][0][1], frag_s_tok[i][0], frag_s_ch[j / 2][2 * (j % 2) + 0]); write(wr + (4 * d_sh_stride) * 8 + 0, frag_c[i][j][0][2], frag_c[i][j][0][3], frag_s_tok[i][1], frag_s_ch[j / 2][2 * (j % 2) + 0]); write(wr + (4 * d_sh_stride) * 0 + 4, frag_c[i][j][1][0], frag_c[i][j][1][1], frag_s_tok[i][0], frag_s_ch[j / 2][2 * (j % 2) + 1]); write(wr + (4 * d_sh_stride) * 8 + 4, frag_c[i][j][1][2], frag_c[i][j][1][3], frag_s_tok[i][1], frag_s_ch[j / 2][2 * (j % 2) + 1]); } d_sh_wr += 16 * (4 * d_sh_stride); } } __syncthreads(); #pragma unroll for (int i = 0; i < ceildiv(16 * thread_m_blocks, threads / (2 * thread_n_blocks)); i++) { if (d_gl_wr < d_gl_wr_end) { D[d_gl_wr] = sh[d_sh_rd]; d_gl_wr += d_gl_wr_delta; d_sh_rd += d_sh_rd_delta; } } }; // Start global fetch and register load pipelines. auto start_pipes = [&]() { #pragma unroll for (int i = 0; i < stages - 1; i++) fetch_to_shared(i, i, i < slice_iters); zero_accums(); wait_for_stage(); fetch_to_registers(0, 0); a_gl_rd += a_gl_rd_delta_o * (stages - 1); }; start_pipes(); // Main loop. while (slice_iters) { // We unroll over both the global fetch and the register load pipeline to // ensure all shared memory accesses are static. Note that both pipelines have // even length meaning that the next iteration will always start at index 0. #pragma unroll for (int pipe = 0; pipe < stages;) { #pragma unroll for (int k = 0; k < b_sh_wr_iters; k++) { fetch_to_registers(k + 1, pipe % stages); if (k == b_sh_wr_iters - 2) { fetch_to_shared((pipe + stages - 1) % stages, pipe, slice_iters >= stages); pipe++; wait_for_stage(); } matmul(k); } slice_iters--; if (slice_iters == 0) break; } a_gl_rd += a_gl_rd_delta_o * stages; // Process results and, if necessary, proceed to the next column slice. // While this pattern may not be the most readable, other ways of writing // the loop seemed to noticeably worse performance after compilation. if (slice_iters == 0) { cp_async_wait<0>(); bool last = slice_idx == slice_count - 1; // For per-column scales, we only fetch them here in the final step before // write-out if (last) { if (s_tok_sh_wr_pred) { cp_async1(&sh_s_tok[s_tok_sh_wr], &s_tok[s_tok_gl_rd]); } if (s_ch_sh_wr_pred) { cp_async4(&sh_s_ch[s_ch_sh_wr], &s_ch[s_ch_gl_rd]); } cp_async_fence(); } thread_block_reduce(); if (last) { cp_async_wait<0>(); __syncthreads(); if (threadIdx.x / 32 < thread_n_blocks / 4) { #pragma unroll for (int i = 0; i < thread_m_blocks; i++) { frag_s_tok[i][0] = *reinterpret_cast(&sh_s_tok[16 * i + 2 * s_tok_sh_rd]); frag_s_tok[i][1] = *reinterpret_cast( &sh_s_tok[16 * i + 2 * s_tok_sh_rd + 1]); } reinterpret_cast(&frag_s_ch)[0] = sh_s_ch[s_ch_sh_rd + 0]; reinterpret_cast(&frag_s_ch)[1] = sh_s_ch[s_ch_sh_rd + 1]; reinterpret_cast(&frag_s_ch)[2] = sh_s_ch[s_ch_sh_rd + 8]; reinterpret_cast(&frag_s_ch)[3] = sh_s_ch[s_ch_sh_rd + 9]; } } if (slice_count > 1) { // only globally reduce if there is more than one // block in a slice barrier_acquire(&locks[slice_col], slice_idx); global_reduce(slice_idx == 0, last); barrier_release(&locks[slice_col], last); } if (last) // only the last block in a slice actually writes the result write_result(); slice_row = 0; slice_col_par++; slice_col++; init_slice(); if (slice_iters) { a_gl_rd = a_gl_stride * (threadIdx.x / a_gl_rd_delta_o) + (threadIdx.x % a_gl_rd_delta_o); #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] += b_sh_stride - b_gl_rd_delta_o * k_tiles; if (slice_col == 0) { #pragma unroll for (int i = 0; i < b_sh_wr_iters; i++) B_ptr[i] -= b_gl_stride; } s_group_gl_rd = s_group_sh_stride * slice_col + threadIdx.x; s_ch_gl_rd = s_ch_sh_stride * slice_col + threadIdx.x; start_pipes(); } } } } #else template shared // fetch pipeline const int group_blocks = -1 // number of consecutive 16x16 blocks // with a separate quantization scale > __global__ void Marlin( const int4* __restrict__ A, // int8 input matrix of shape mxk const int4* __restrict__ B, // 4bit quantized weight matrix of shape kxn int4* __restrict__ C, // int32 global_reduce buffer of shape // (max_par*16*4)xn, as int8 tensor core's output is // int32 dtype int4* __restrict__ D, // fp16 output buffer of shape mxn const float* __restrict__ s_tok, // fp32 activation per-token quantization // scales of shape mx1 const int4* __restrict__ s_ch, // fp32 weight per-channel quantization // scales of shape 1xn const int4* __restrict__ s_group, // fp16 weight per-group quantization // scales of shape (k/groupsize)xn, when // group_blocks=-1, it should be nullptr int prob_m, // batch dimension m int prob_n, // output dimension n int prob_k, // reduction dimension k int* locks // extra global storage for barrier synchronization ) { // Marlin is not implemented yet for SM < 8.0 assert(false); return; } #endif // 8 warps are a good choice since every SM has 4 schedulers and having more // than 1 warp per schedule allows some more latency hiding. At the same time, // we want relatively few warps to have many registers per warp and small tiles. const int USER_THREADS = 256; // Note: This is only used with user-provided thread_k/n const int STAGES = 4; // 4 pipeline stages fit into shared memory static constexpr int min_thread_n = 64; static constexpr int min_thread_k = 64; static constexpr int tile_size = 16; static constexpr int max_par = 16; static constexpr int pack_factor_4bit = 8; // We have 8 4-bit vals inside a 32 bit #define __CALL_IF(THREAD_M_BLOCKS, THREAD_N_BLOCKS, THREAD_K_BLOCKS, \ GROUP_BLOCKS, NUM_THREADS) \ else if (thread_m_blocks == THREAD_M_BLOCKS && \ thread_n_blocks == THREAD_N_BLOCKS && \ thread_k_blocks == THREAD_K_BLOCKS && \ group_blocks == GROUP_BLOCKS && num_threads == NUM_THREADS) { \ cudaFuncSetAttribute(Marlin, \ cudaFuncAttributeMaxDynamicSharedMemorySize, \ max_shared_mem); \ Marlin \ <<>>( \ A_ptr, B_ptr, C_ptr, D_ptr, s_tok_ptr, s_ch_ptr, s_group_ptr, \ prob_m, prob_n, prob_k, locks); \ } typedef struct { int thread_k; int thread_n; int num_threads; } thread_config_t; thread_config_t small_batch_thread_configs[] = { // Ordered by priority // thread_k, thread_n, num_threads {128, 128, 256}, // Default {128, 64, 128}, // Reduce N 2X, same K {64, 256, 256}, // Reduce K 2X, increase N 2X {64, 128, 128}, // Reduce K 2X, same N }; thread_config_t large_batch_thread_configs[] = { // Ordered by priority // thread_k, thread_n, num_threads {64, 256, 256}, // Default {128, 128, 256}, // Reduce N 2X, increase K 2X {64, 128, 128}, // Reduce N 2X, same K {128, 64, 128}, // Reduce N 4X, increase K 2X }; bool is_valid_config(thread_config_t const& th_config, int prob_m, int prob_n, int prob_k) { // Sanity if (th_config.thread_k == -1 || th_config.thread_n == -1 || th_config.num_threads == -1) { return false; } // Verify K/N are divisible by thread K/N if (prob_k % th_config.thread_k != 0 || prob_n % th_config.thread_n != 0) { return false; } // thread_k can be only 128 or 64 (because it must be less than groupsize // which is 128) if (th_config.thread_k != 128 && th_config.thread_k != 64) { return false; } // Verify min for thread K/N if (th_config.thread_n < min_thread_n || th_config.thread_k < min_thread_k) { return false; } // num_threads must be at least 128 (= 4 warps) if (th_config.num_threads < 128) { return false; } return true; } thread_config_t determine_thread_config(int prob_m, int prob_n, int prob_k) { if (prob_m <= 16) { for (auto th_config : small_batch_thread_configs) { if (is_valid_config(th_config, prob_m, prob_n, prob_k)) { return th_config; } } } else { for (auto th_config : large_batch_thread_configs) { if (is_valid_config(th_config, prob_m, prob_n, prob_k)) { return th_config; } } } return thread_config_t{-1, -1, -1}; } #define CALL_IF(N_BLOCKS, K_BLOCKS, NUM_THREADS) \ __CALL_IF(1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ __CALL_IF(1, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \ __CALL_IF(1, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ __CALL_IF(1, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \ __CALL_IF(2, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ __CALL_IF(2, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \ __CALL_IF(3, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ __CALL_IF(3, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) \ __CALL_IF(4, N_BLOCKS, K_BLOCKS, -1, NUM_THREADS) \ __CALL_IF(4, N_BLOCKS, K_BLOCKS, 8, NUM_THREADS) void marlin_qqq_cuda(const void* A, const void* B, void* C, void* D, void* s_tok, void* s_ch, void* s_group, int prob_m, int prob_n, int prob_k, void* workspace, int groupsize = -1, int dev = 0, cudaStream_t stream = 0, int thread_k = -1, int thread_n = -1, int sms = -1, int max_par = 16) { int tot_m = prob_m; int tot_m_blocks = ceildiv(tot_m, 16); int pad = 16 * tot_m_blocks - tot_m; if (sms == -1) cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, dev); int max_shared_mem = 0; cudaDeviceGetAttribute(&max_shared_mem, cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); TORCH_CHECK(max_shared_mem > 0); // Set thread config thread_config_t th_config; if (thread_k != -1 && thread_n != -1) { // User-defined config th_config = thread_config_t{thread_k, thread_n, USER_THREADS}; } else { // Auto config th_config = determine_thread_config(prob_m, prob_n, prob_k); } if (!is_valid_config(th_config, prob_m, prob_n, prob_k)) { throw std::runtime_error( "Invalid thread config: thread_k = " + str(th_config.thread_k) + ", thread_n = " + str(th_config.thread_n) + ", num_threads = " + str(th_config.num_threads) + " for MKN = [" + str(prob_m) + ", " + str(prob_k) + ", " + str(prob_n) + "]"); } int num_threads = th_config.num_threads; thread_k = th_config.thread_k; thread_n = th_config.thread_n; int thread_k_blocks = thread_k / 16; int thread_n_blocks = thread_n / 16; int group_blocks = (groupsize == -1) ? -1 : groupsize / 16; int blocks = sms; if (prob_m == 0 || prob_n == 0 || prob_k == 0) { return; } TORCH_CHECK(prob_n % thread_n == 0, "prob_n = ", prob_n, " is not divisible by thread_n = ", thread_n); TORCH_CHECK(prob_k % thread_k == 0, "prob_k = ", prob_k, " is not divisible by thread_k = ", thread_k); if (group_blocks != -1) { TORCH_CHECK(prob_k % group_blocks == 0, "prob_k = ", prob_k, " is not divisible by group_blocks = ", group_blocks); } const int4* A_ptr = (const int4*)A; const int4* B_ptr = (const int4*)B; int4* C_ptr = (int4*)C; int4* D_ptr = (int4*)D; const float* s_tok_ptr = (const float*)s_tok; const int4* s_ch_ptr = (const int4*)s_ch; const int4* s_group_ptr = (const int4*)s_group; int* locks = (int*)workspace; for (int i = 0; i < tot_m_blocks; i += 4) { int thread_m_blocks = tot_m_blocks - i; prob_m = tot_m - 16 * i; int par = 1; if (thread_m_blocks > 4) { // Note that parallel > 1 currently only works for inputs without any // padding par = (16 * thread_m_blocks - pad) / 64; if (par > max_par) par = max_par; prob_m = 64 * par; i += 4 * (par - 1); thread_m_blocks = 4; } // For compilation speed, we only define the kernel configurations that have // seemed useful (in terms of performance) in our testing, however many more // are, in principle, possible. if (false) { } CALL_IF(8, 8, 256) CALL_IF(16, 4, 256) CALL_IF(8, 4, 128) CALL_IF(4, 8, 128) else { throw std::runtime_error("Unsupported shapes: MKN = [" + str(prob_m) + ", " + str(prob_k) + ", " + str(prob_n) + "]" + ", groupsize = " + str(groupsize) + ", thread_m_blocks = " + str(thread_m_blocks) + ", thread_n_blocks = " + str(thread_n_blocks) + ", thread_k_blocks = " + str(thread_k_blocks)); } A_ptr += 16 * thread_m_blocks * (prob_k / 16) * par; D_ptr += 16 * thread_m_blocks * (prob_n / 8) * par; s_tok_ptr += 16 * thread_m_blocks * par; } } } // anonymous namespace torch::Tensor marlin_qqq_gemm(torch::Tensor const& a, torch::Tensor const& b_q_weight, torch::Tensor const& s_tok, torch::Tensor const& s_ch, torch::Tensor const& s_group, torch::Tensor& workspace, int64_t size_m, int64_t size_n, int64_t size_k) { // Verify M TORCH_CHECK(size_m == a.size(0), "Shape mismatch: a.size(0) = " + str(a.size(0)) + ", size_m = " + str(size_m)); TORCH_CHECK(size_m == s_tok.numel(), "Shape mismatch: s_tok.numel() = " + str(s_tok.numel()) + ", size_m = " + str(size_m)); // Verify K TORCH_CHECK(size_k == a.size(1), "Shape mismatch: a.size(1) = " + str(a.size(1)) + ", size_k = " + str(size_k)); TORCH_CHECK(size_k % tile_size == 0, "size_k = " + str(size_k) + " is not divisible by tile_size = " + str(tile_size)); TORCH_CHECK( (size_k / tile_size) == b_q_weight.size(0), "Shape mismatch: b_q_weight.size(0) = " + str(b_q_weight.size(0)) + ", size_k = " + str(size_k) + ", tile_size = " + str(tile_size)); int groupsize = (s_group.numel() == 0) ? -1 : size_k / s_group.size(0); // Verify groupsize TORCH_CHECK(groupsize == -1 || groupsize == 128, "Unexpected groupsize = " + str(groupsize)); // Verify N TORCH_CHECK(s_ch.numel() == size_n, "Shape mismatch: s_ch.numel() = " + str(s_ch.numel()) + ", size_n = " + str(size_n)); TORCH_CHECK(b_q_weight.size(1) % tile_size == 0, "b_q_weight.size(1) = " + str(b_q_weight.size(1)) + " is not divisible by tile_size = " + str(tile_size)); if (groupsize != -1) { TORCH_CHECK(s_group.size(1) == size_n, "Shape mismatch: s_group.size(1) = " + str(s_group.size(1)) + ", size_n = " + str(size_n)); TORCH_CHECK( size_k % s_group.size(0) == 0, "size_k = " + str(size_k) + ", is not divisible by s_group.size(0) = " + str(s_group.size(0))); } int actual_size_n = (b_q_weight.size(1) / tile_size) * pack_factor_4bit; TORCH_CHECK(size_n == actual_size_n, "Shape mismatch: size_n = " + str(size_n) + ", actual_size_n = " + str(actual_size_n)); // Verify A device and strides TORCH_CHECK(a.device().is_cuda(), "A is not on GPU"); TORCH_CHECK(a.is_contiguous(), "A is not contiguous"); // Verify B device and strides TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU"); TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous"); // Verify s_tok device, strides and dtype TORCH_CHECK(s_tok.device().is_cuda(), "s_tok is not on GPU"); TORCH_CHECK(s_tok.is_contiguous(), "s_tok is not contiguous"); TORCH_CHECK(s_tok.dtype() == torch::kFloat32, "s_tok's dtype is not float32"); // Verify s_ch device, strides and dtype TORCH_CHECK(s_ch.device().is_cuda(), "s_ch is not on GPU"); TORCH_CHECK(s_ch.is_contiguous(), "s_ch is not contiguous"); TORCH_CHECK(s_ch.dtype() == torch::kFloat32, "s_ch's dtype is not float32"); // Verify s_group device, strides and dtype TORCH_CHECK(s_group.device().is_cuda(), "s_group is not on GPU"); TORCH_CHECK(s_group.is_contiguous(), "s_group is not contiguous"); TORCH_CHECK(s_group.dtype() == torch::kFloat16, "s_group's dtype is not float16"); // Verify workspace size TORCH_CHECK(size_n % min_thread_n == 0, "size_n = " + str(size_n) + ", is not divisible by min_thread_n = " + str(min_thread_n)); int min_workspace_size = (size_n / min_thread_n) * max_par; TORCH_CHECK(workspace.numel() >= min_workspace_size, "workspace.numel = " + str(workspace.numel()) + " is below min_workspace_size = " + str(min_workspace_size)); // Alloc C matrix const at::cuda::OptionalCUDAGuard device_guard(device_of(a)); auto options_c = torch::TensorOptions().dtype(torch::kInt).device(a.device()); torch::Tensor c = torch::empty({max_par * 64, size_n}, options_c); // Alloc D matrix auto options_d = torch::TensorOptions().dtype(torch::kFloat16).device(a.device()); torch::Tensor d = torch::empty({size_m, size_n}, options_d); // thread_k: `k` size of a thread_tile in `weights` (can usually be left as // auto -1) int thread_k = -1; // thread_n: `n` size of a thread_tile in `weights` (can usually be left as // auto -1) int thread_n = -1; // sms: number of SMs to use for the kernel (can usually be left as auto -1) int sms = -1; int dev = a.get_device(); marlin_qqq_cuda( a.data_ptr(), b_q_weight.data_ptr(), c.data_ptr(), d.data_ptr(), s_tok.data_ptr(), s_ch.data_ptr(), s_group.data_ptr(), size_m, size_n, size_k, workspace.data_ptr(), groupsize, dev, at::cuda::getCurrentCUDAStream(dev), thread_k, thread_n, sms, max_par); return d; }