# coding=utf-8 # Copyright 2024 The PygmalionAI team. # Copyright 2024 The vLLM team. # Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Iterable, List, Optional, Set, Tuple import torch from loguru import logger from torch import nn from transformers import Gemma2Config from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig, LoRAConfig from aphrodite.common.sequence import IntermediateTensors, SamplerOutput from aphrodite.distributed import get_tensor_model_parallel_world_size from aphrodite.modeling.layers.activation import GeluAndMul from aphrodite.modeling.layers.layernorm import GemmaRMSNorm from aphrodite.modeling.layers.linear import (MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import GemmaRotaryEmbedding from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig from .interfaces import SupportsLoRA class Gemma2MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, hidden_activation: str, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config) self.down_proj = RowParallelLinear(intermediate_size, hidden_size, bias=False, quant_config=quant_config) if not (hidden_act == hidden_activation == "gelu_pytorch_tanh"): raise ValueError( "Gemma2 uses `gelu_pytorch_tanh` as the hidden activation " "function. Please set `hidden_act` and `hidden_activation` to " "`gelu_pytorch_tanh`.") self.act_fn = GeluAndMul(approximate="tanh") def forward(self, x: torch.Tensor) -> torch.Tensor: gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class Gemma2Attention(nn.Module): def __init__(self, layer_idx: int, config: Gemma2Config, hidden_size: int, num_heads: int, num_kv_heads: int, head_dim: int, max_position_embeddings: int, rope_theta: float, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, attn_logits_soft_cap: Optional[float] = None) -> None: super().__init__() self.layer_idx = layer_idx self.config = config self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = head_dim self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = config.query_pre_attn_scalar**-0.5 self.rope_theta = rope_theta self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=config.attention_bias, quant_config=quant_config, ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=config.attention_bias, quant_config=quant_config, ) # TODO: Use the `get_rope` interface. self.rotary_emb = GemmaRotaryEmbedding( self.head_dim, self.head_dim, max_position_embeddings, base=self.rope_theta, is_neox_style=True, dtype=torch.get_default_dtype(), ) # FIXME: While Gemma 2 uses sliding window attention for every # odd layer, Aphrodite currently ignores it and uses global attention # for all layers. use_sliding_window = (layer_idx % 2 == 1 and config.sliding_window is not None) del use_sliding_window # Unused. self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, logits_soft_cap=attn_logits_soft_cap) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.o_proj(attn_output) return output class Gemma2DecoderLayer(nn.Module): def __init__( self, layer_idx: int, config: Gemma2Config, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size self.self_attn = Gemma2Attention( layer_idx=layer_idx, config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, num_kv_heads=config.num_key_value_heads, head_dim=config.head_dim, max_position_embeddings=config.max_position_embeddings, rope_theta=config.rope_theta, cache_config=cache_config, quant_config=quant_config, attn_logits_soft_cap=config.attn_logit_softcapping, ) self.hidden_size = config.hidden_size self.mlp = Gemma2MLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, hidden_activation=config.hidden_activation, quant_config=quant_config, ) self.input_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.pre_feedforward_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_feedforward_layernorm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states, residual = self.pre_feedforward_layernorm( hidden_states, residual) hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) return hidden_states, residual class Gemma2Model(nn.Module): def __init__( self, config: Gemma2Config, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.config = config self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.layers = nn.ModuleList([ Gemma2DecoderLayer(layer_idx, config, cache_config, quant_config) for layer_idx in range(config.num_hidden_layers) ]) self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) # Normalize the embedding by sqrt(hidden_size) # The normalizer's data type should be downcasted to the model's # data type such as bfloat16, not float32. # See https://github.com/huggingface/transformers/pull/29402 normalizer = self.config.hidden_size**0.5 self.register_buffer("normalizer", torch.tensor(normalizer)) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) hidden_states *= self.normalizer residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, kv_caches[i], attn_metadata, residual, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class Gemma2ForCausalLM(nn.Module, SupportsLoRA): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } # LoRA specific attributes supported_lora_modules = [ "qkv_proj", "o_proj", "gate_up_proj", "down_proj", ] # Gemma does not apply LoRA to the embedding layer. embedding_modules = {} embedding_padding_modules = [] def __init__( self, config: Gemma2Config, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, lora_config: Optional[LoRAConfig] = None, ) -> None: del lora_config # Unused. super().__init__() self.config = config self.quant_config = quant_config self.model = Gemma2Model(config, cache_config, quant_config) self.logits_processor = LogitsProcessor( config.vocab_size, soft_cap=config.final_logit_softcapping) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits(self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> torch.Tensor: logits = self.logits_processor(self.model.embed_tokens, hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) loaded_params: Set[str] = set() for name, loaded_weight in weights: for (param_name, shard_name, shard_id) in stacked_params_mapping: if shard_name not in name: continue name = name.replace(shard_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # lm_head is not used in Aphrodite as it is tied with # embed_token. # To prevent errors, skip loading lm_head.weight. if "lm_head.weight" in name: continue # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) unloaded_params = params_dict.keys() - loaded_params if unloaded_params: logger.warning( "Some weights are not initialized from checkpoints: " f"{unloaded_params}")