import os import sys from typing import Optional import torch import torch.nn.functional as F from aphrodite import _custom_ops as ops from aphrodite.common.utils import FlexibleArgumentParser from aphrodite.quantization.aqlm import (dequantize_weight, generic_dequantize_gemm, get_int_dtype, optimized_dequantize_gemm) os.environ['CUDA_VISIBLE_DEVICES'] = '0' def torch_mult( input: torch.Tensor, # [..., in_features] weights: torch.Tensor, scales: torch.Tensor, # [num_out_groups, 1, 1, 1] ) -> torch.Tensor: output = F.linear(input, weights) return output def dequant_out_scale( input: torch.Tensor, # [..., in_features] codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks] codebooks: torch. Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size] scales: torch.Tensor, # [num_out_groups, 1, 1, 1] output_partition_sizes: torch.IntTensor, bias: Optional[torch.Tensor], ) -> torch.Tensor: weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes) if bias is None: output = F.linear(input, weights, bias) orig_shape = output.shape flattened_output = output.view(-1, output.size(-1)) f_scales = scales.view(-1, scales.shape[0]) b_scales = f_scales.expand(flattened_output.shape[0], -1) flattened_output *= b_scales return flattened_output.view(orig_shape) else: b_scales = scales.view(scales.shape[:-3] + (-1, )).expand( -1, weights.shape[1]) weights *= b_scales return F.linear(input, weights, bias) def dequant_weight_scale( input: torch.Tensor, # [..., in_features] codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks] codebooks: torch. Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size] scales: torch.Tensor, # [num_out_groups, 1, 1, 1] output_partition_sizes: torch.IntTensor, bias: Optional[torch.Tensor], ) -> torch.Tensor: weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes) b_scales = scales.view(scales.shape[:-3] + (-1, )).expand( -1, weights.shape[1]) weights *= b_scales return F.linear(input, weights, bias) def dequant_no_scale( input: torch.Tensor, # [..., in_features] codes: torch.IntTensor, # [num_out_groups, num_in_groups, num_codebooks] codebooks: torch. Tensor, # [num_codebooks, codebook_size, out_group_size, in_group_size] scales: torch.Tensor, # [num_out_groups, 1, 1, 1] output_partition_sizes: torch.IntTensor, bias: Optional[torch.Tensor], ) -> torch.Tensor: weights = ops.aqlm_dequant(codes, codebooks, output_partition_sizes) return F.linear(input, weights, bias) # Compare the optimized 1x16 and 2x8 cuda decompression/dequant kernels against # the generic pytorch version. # Just visual comparison. def dequant_test(k: int, parts: torch.Tensor, nbooks: int, bits: int) -> None: n = int(parts.sum().item()) device = torch.device('cuda:0') code_range = (1 << bits) // 2 ingroups = 8 codes = torch.randint(-code_range, code_range, size=(n, k // ingroups, nbooks), dtype=get_int_dtype(bits), device=device) codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8), dtype=torch.float16, device=device) count = 0 for index in range(16): for i in range(8): for book in range(nbooks): codebooks[book, index, 0, i] = count * (10**book) count += 1 print("codes shape", codes.shape) for i in range(16): for book in range(nbooks): codes[0, i, book] = i codes[0, -i, book] = i weights = dequantize_weight(codes, codebooks, None) weights2 = ops.aqlm_dequant(codes, codebooks, parts) print("weights shape:", weights.shape) print("weights2 shape:", weights2.shape) print("weights are:", weights) print("weights2 are:", weights2) print("first 128 weights are", weights[0, 0:128].to(torch.int32)) print("first 128 weights2 are:", weights2[0, 0:128].to(torch.int32)) print("last 128 weights are", weights[0, -128:]) print("last 128 weights2 are:", weights2[0, -128:]) def main(): parser = FlexibleArgumentParser(description="Benchmark aqlm performance.") # Add arguments parser.add_argument("--nbooks", type=int, default=1, help="Number of codebooks (default: 1)") parser.add_argument("--bits", type=int, default=16, help="Number of bits per code element (default: 16)") parser.add_argument( "--test", type=bool, default=False, help="Run the decompression/dequant tester rather than benchmarking " "(default: False)") # Parse the arguments args = parser.parse_args() # Extract values nbooks = args.nbooks bits = args.bits if args.test: dequant_test(4096, torch.tensor((4096, )), nbooks, bits) return # Otherwise, benchmark. methods = [ ops.aqlm_gemm, dequant_out_scale, generic_dequantize_gemm, optimized_dequantize_gemm, dequant_weight_scale, torch_mult, dequant_no_scale, ] filename = f"./aqlm_benchmark_{nbooks}x{bits}.csv" print(f"writing benchmarks to file {filename}") with open(filename, "w") as f: sys.stdout = f print('m | k | n | n parts', end='') for method in methods: print(f" | {method.__name__.replace('_', ' ')} (µs)", end='') print('') # These are reasonable prefill sizes. ksandpartions = ((4096, (4096, 4096, 4096)), (4096, (4096, )), (4096, (11008, 11008)), (11008, (4096, ))) # reasonable ranges for m. for m in [ 1, 2, 4, 8, 10, 12, 14, 16, 24, 32, 48, 52, 56, 64, 96, 112, 128, 256, 512, 1024, 1536, 2048, 3072, 4096 ]: print(f'{m}', file=sys.__stdout__) for ksp in ksandpartions: run_grid(m, ksp[0], torch.tensor(ksp[1]), nbooks, bits, methods) sys.stdout = sys.__stdout__ def run_grid(m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, methods): # I didn't see visible improvements from increasing these, but feel free :) num_warmup_trials = 1 num_trials = 1 num_calls = 100 # warmup. for method in methods: for _ in range(num_warmup_trials): run_timing( num_calls=num_calls, m=m, k=k, parts=parts, nbooks=nbooks, bits=bits, method=method, ) n = parts.sum().item() print(f'{m} | {k} | {n} | {parts.tolist()}', end='') for method in methods: best_time_us = 1e20 for _ in range(num_trials): kernel_dur_ms = run_timing( num_calls=num_calls, m=m, k=k, parts=parts, nbooks=nbooks, bits=bits, method=method, ) kernel_dur_us = 1000 * kernel_dur_ms if kernel_dur_us < best_time_us: best_time_us = kernel_dur_us print(f' | {kernel_dur_us:.0f}', end='') print('') def run_timing(num_calls: int, m: int, k: int, parts: torch.Tensor, nbooks: int, bits: int, method) -> float: n = int(parts.sum().item()) device = torch.device('cuda:0') input = torch.randn((1, m, k), dtype=torch.float16, device=device) code_range = (1 << bits) // 2 ingroups = 8 codes = torch.randint(-code_range, code_range, size=(n, k // ingroups, nbooks), dtype=get_int_dtype(bits), device=device) codebooks = torch.randn(size=(parts.shape[0] * nbooks, 1 << bits, 1, 8), dtype=torch.float16, device=device) scales = torch.randn(size=(n, 1, 1, 1), dtype=torch.float16, device=device) # for comparison to just a pytorch mult. weights = torch.randn((n, k), dtype=torch.float16, device=device) start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() if method is torch_mult: for i in range(num_calls): torch_mult(input, weights, scales) else: for i in range(num_calls): method(input, codes, codebooks, scales, parts, None) end_event.record() end_event.synchronize() dur_ms = start_event.elapsed_time(end_event) / num_calls return dur_ms if __name__ == "__main__": sys.exit(main())