"""Benchmark online serving throughput. On the server side, run one of the following commands: Aphrodite OpenAI API server aphrodite run \ --swap-space 16 \ --disable-log-requests (TGI backend) ./launch_tgi_server.sh On the client side, run: python tests/benchmarks/serving.py \ --backend \ --model \ --dataset-name sharegpt \ --dataset-path \ --request-rate \ # By default is inf --num-prompts # By default is 1000 when using tgi backend, add --endpoint /generate_stream to the end of the command above. """ import argparse import asyncio import json import os import random import time import warnings from dataclasses import dataclass from datetime import datetime from typing import Any, AsyncGenerator, Dict, List, Optional, Tuple import numpy as np from backend_request_func import (ASYNC_REQUEST_FUNCS, RequestFuncInput, RequestFuncOutput) from tqdm.asyncio import tqdm from transformers import PreTrainedTokenizerBase try: from aphrodite.transformers_utils.tokenizer import get_tokenizer except ImportError: from backend_request_func import get_tokenizer try: from aphrodite.common.utils import FlexibleArgumentParser except ImportError: from argparse import ArgumentParser as FlexibleArgumentParser @dataclass class BenchmarkMetrics: completed: int total_input: int total_output: int request_throughput: float input_throughput: float output_throughput: float mean_ttft_ms: float median_ttft_ms: float std_ttft_ms: float p99_ttft_ms: float mean_tpot_ms: float median_tpot_ms: float std_tpot_ms: float p99_tpot_ms: float mean_itl_ms: float median_itl_ms: float std_itl_ms: float p99_itl_ms: float def sample_sharegpt_requests( dataset_path: str, num_requests: int, tokenizer: PreTrainedTokenizerBase, fixed_output_len: Optional[int] = None, ) -> List[Tuple[str, int, int]]: if fixed_output_len is not None and fixed_output_len < 4: raise ValueError("output_len too small") # Load the dataset. with open(dataset_path) as f: dataset = json.load(f) # Filter out the conversations with less than 2 turns. dataset = [data for data in dataset if len(data["conversations"]) >= 2] # Only keep the first two turns of each conversation. dataset = [(data["conversations"][0]["value"], data["conversations"][1]["value"]) for data in dataset] # Shuffle the dataset. random.shuffle(dataset) # Filter out sequences that are too long or too short filtered_dataset: List[Tuple[str, int, int]] = [] for i in range(len(dataset)): if len(filtered_dataset) == num_requests: break # Tokenize the prompts and completions. prompt = dataset[i][0] prompt_token_ids = tokenizer(prompt).input_ids completion = dataset[i][1] completion_token_ids = tokenizer(completion).input_ids prompt_len = len(prompt_token_ids) output_len = len(completion_token_ids ) if fixed_output_len is None else fixed_output_len if prompt_len < 4 or output_len < 4: # Prune too short sequences. continue if prompt_len > 1024 or prompt_len + output_len > 2048: # Prune too long sequences. continue filtered_dataset.append((prompt, prompt_len, output_len)) return filtered_dataset def sample_sonnet_requests( dataset_path: str, num_requests: int, input_len: int, output_len: int, prefix_len: int, tokenizer: PreTrainedTokenizerBase, ) -> List[Tuple[str, str, int, int]]: assert ( input_len > prefix_len ), "'args.sonnet-input-len' must be greater than 'args.prefix-input-len'." # Load the dataset. with open(dataset_path) as f: poem_lines = f.readlines() # Tokenize the poem lines. poem_token_ids = tokenizer(poem_lines).input_ids average_poem_len = sum( len(token_ids) for token_ids in poem_token_ids) / len(poem_token_ids) # Base prefix for all requests. base_prompt = "Pick as many lines as you can from these poem lines:\n" base_message = [{ "role": "user", "content": base_prompt, }] base_prompt_formatted = tokenizer.apply_chat_template( base_message, add_generation_prompt=True, tokenize=False) base_prompt_offset = len(tokenizer(base_prompt_formatted).input_ids) assert ( input_len > base_prompt_offset ), f"Please set 'args.sonnet-input-len' higher than {base_prompt_offset}." num_input_lines = round( (input_len - base_prompt_offset) / average_poem_len) # First approximately `prefix_len` number of tokens in the # prompt are fixed poem lines. assert ( prefix_len > base_prompt_offset ), f"Please set 'args.sonnet-prefix-len' higher than {base_prompt_offset}." num_prefix_lines = round( (prefix_len - base_prompt_offset) / average_poem_len) prefix_lines = poem_lines[:num_prefix_lines] # Sample the rest of lines per request. sampled_requests: List[Tuple[str, int, int]] = [] for _ in range(num_requests): sampled_lines = "".join( prefix_lines + random.sample(poem_lines, num_input_lines - num_prefix_lines)) prompt = f"{base_prompt}{sampled_lines}" message = [ { "role": "user", "content": prompt, }, ] prompt_formatted = tokenizer.apply_chat_template( message, add_generation_prompt=True, tokenize=False) prompt_len = len(tokenizer(prompt_formatted).input_ids) sampled_requests.append( (prompt, prompt_formatted, prompt_len, output_len)) return sampled_requests def sample_random_requests( input_len: int, output_len: int, num_prompts: int, range_ratio: float, tokenizer: PreTrainedTokenizerBase) -> List[Tuple[str, int, int]]: input_lens = np.random.randint( int(input_len * range_ratio), input_len + 1, size=num_prompts, ) output_lens = np.random.randint( int(output_len * range_ratio), output_len + 1, size=num_prompts, ) offsets = np.random.randint(0, tokenizer.vocab_size, size=num_prompts) input_requests = [] for i in range(num_prompts): prompt = tokenizer.decode([(offsets[i] + i + j) % tokenizer.vocab_size for j in range(input_lens[i])]) input_requests.append( (prompt, int(input_lens[i]), int(output_lens[i]))) return input_requests async def get_request( input_requests: List[Tuple[str, int, int]], request_rate: float, ) -> AsyncGenerator[Tuple[str, int, int], None]: input_requests = iter(input_requests) for request in input_requests: yield request if request_rate == float("inf"): # If the request rate is infinity, then we don't need to wait. continue # Sample the request interval from the exponential distribution. interval = np.random.exponential(1.0 / request_rate) # The next request will be sent after the interval. await asyncio.sleep(interval) def calculate_metrics( input_requests: List[Tuple[str, int, int]], outputs: List[RequestFuncOutput], dur_s: float, tokenizer: PreTrainedTokenizerBase, ) -> Tuple[BenchmarkMetrics, List[int]]: actual_output_lens: List[int] = [] total_input = 0 completed = 0 itls: List[float] = [] tpots: List[float] = [] ttfts: List[float] = [] for i in range(len(outputs)): if outputs[i].success: # We use the tokenizer to count the number of output tokens for all # serving backends instead of looking at len(outputs[i].itl) since # multiple output tokens may be bundled together # Note : this may inflate the output token count slightly output_len = len( tokenizer(outputs[i].generated_text, add_special_tokens=False).input_ids) actual_output_lens.append(output_len) total_input += input_requests[i][1] if output_len > 1: tpots.append( (outputs[i].latency - outputs[i].ttft) / (output_len - 1)) itls += outputs[i].itl ttfts.append(outputs[i].ttft) completed += 1 else: actual_output_lens.append(0) if completed == 0: warnings.warn( "All requests failed. This is likely due to a misconfiguration " "on the benchmark arguments.", stacklevel=2) metrics = BenchmarkMetrics( completed=completed, total_input=total_input, total_output=sum(actual_output_lens), request_throughput=completed / dur_s, input_throughput=total_input / dur_s, output_throughput=sum(actual_output_lens) / dur_s, mean_ttft_ms=np.mean(ttfts or 0) * 1000, # ttfts is empty if streaming is not supported by backend median_ttft_ms=np.median(ttfts or 0) * 1000, std_ttft_ms=np.std(ttfts or 0) * 1000, p99_ttft_ms=np.percentile(ttfts or 0, 99) * 1000, mean_tpot_ms=np.mean(tpots or 0) * 1000, median_tpot_ms=np.median(tpots or 0) * 1000, std_tpot_ms=np.std(tpots or 0) * 1000, p99_tpot_ms=np.percentile(tpots or 0, 99) * 1000, mean_itl_ms=np.mean(itls or 0) * 1000, median_itl_ms=np.median(itls or 0) * 1000, std_itl_ms=np.std(itls or 0) * 1000, p99_itl_ms=np.percentile(itls or 0, 99) * 1000, ) return metrics, actual_output_lens async def benchmark( backend: str, api_url: str, model_id: str, tokenizer: PreTrainedTokenizerBase, input_requests: List[Tuple[str, int, int]], best_of: int, use_beam_search: bool, request_rate: float, disable_tqdm: bool, ): if backend in ASYNC_REQUEST_FUNCS: request_func = ASYNC_REQUEST_FUNCS[backend] else: raise ValueError(f"Unknown backend: {backend}") print("Starting initial single prompt test run...") test_prompt, test_prompt_len, test_output_len = input_requests[0] test_input = RequestFuncInput( model=model_id, prompt=test_prompt, api_url=api_url, prompt_len=test_prompt_len, output_len=test_output_len, best_of=best_of, use_beam_search=use_beam_search, ) test_output = await request_func(request_func_input=test_input) if not test_output.success: raise ValueError( "Initial test run failed - Please make sure benchmark arguments " f"are correctly specified. Error: {test_output.error}") else: print("Initial test run completed. Starting main benchmark run...") print(f"Traffic request rate: {request_rate}") pbar = None if disable_tqdm else tqdm(total=len(input_requests)) benchmark_start_time = time.perf_counter() tasks: List[asyncio.Task] = [] async for request in get_request(input_requests, request_rate): prompt, prompt_len, output_len = request request_func_input = RequestFuncInput( model=model_id, prompt=prompt, api_url=api_url, prompt_len=prompt_len, output_len=output_len, best_of=best_of, use_beam_search=use_beam_search, ) tasks.append( asyncio.create_task( request_func(request_func_input=request_func_input, pbar=pbar))) outputs: List[RequestFuncOutput] = await asyncio.gather(*tasks) if pbar is not None: pbar.close() benchmark_duration = time.perf_counter() - benchmark_start_time metrics, actual_output_lens = calculate_metrics( input_requests=input_requests, outputs=outputs, dur_s=benchmark_duration, tokenizer=tokenizer, ) print("{s:{c}^{n}}".format(s=' Serving Benchmark Result ', n=50, c='=')) print("{:<40} {:<10}".format("Successful requests:", metrics.completed)) print("{:<40} {:<10.2f}".format("Benchmark duration (s):", benchmark_duration)) print("{:<40} {:<10}".format("Total input tokens:", metrics.total_input)) print("{:<40} {:<10}".format("Total generated tokens:", metrics.total_output)) print("{:<40} {:<10.2f}".format("Request throughput (req/s):", metrics.request_throughput)) print("{:<40} {:<10.2f}".format("Input token throughput (tok/s):", metrics.input_throughput)) print("{:<40} {:<10.2f}".format("Output token throughput (tok/s):", metrics.output_throughput)) print("{s:{c}^{n}}".format(s='Time to First Token', n=50, c='-')) print("{:<40} {:<10.2f}".format("Mean TTFT (ms):", metrics.mean_ttft_ms)) print("{:<40} {:<10.2f}".format("Median TTFT (ms):", metrics.median_ttft_ms)) print("{:<40} {:<10.2f}".format("P99 TTFT (ms):", metrics.p99_ttft_ms)) print("{s:{c}^{n}}".format(s='Time per Output Token (excl. 1st token)', n=50, c='-')) print("{:<40} {:<10.2f}".format("Mean TPOT (ms):", metrics.mean_tpot_ms)) print("{:<40} {:<10.2f}".format("Median TPOT (ms):", metrics.median_tpot_ms)) print("{:<40} {:<10.2f}".format("P99 TPOT (ms):", metrics.p99_tpot_ms)) print("{s:{c}^{n}}".format(s='Inter-token Latency', n=50, c='-')) print("{:<40} {:<10.2f}".format("Mean ITL (ms):", metrics.mean_itl_ms)) print("{:<40} {:<10.2f}".format("Median ITL (ms):", metrics.median_itl_ms)) print("{:<40} {:<10.2f}".format("P99 ITL (ms):", metrics.p99_itl_ms)) print("=" * 50) result = { "duration": benchmark_duration, "completed": metrics.completed, "total_input_tokens": metrics.total_input, "total_output_tokens": metrics.total_output, "request_throughput": metrics.request_throughput, "input_throughput": metrics.input_throughput, "output_throughput": metrics.output_throughput, "mean_ttft_ms": metrics.mean_ttft_ms, "median_ttft_ms": metrics.median_ttft_ms, "std_ttft_ms": metrics.std_ttft_ms, "p99_ttft_ms": metrics.p99_ttft_ms, "mean_tpot_ms": metrics.mean_tpot_ms, "median_tpot_ms": metrics.median_tpot_ms, "std_tpot_ms": metrics.std_tpot_ms, "p99_tpot_ms": metrics.p99_tpot_ms, "mean_itl_ms": metrics.mean_itl_ms, "median_itl_ms": metrics.median_itl_ms, "std_itl_ms": metrics.std_itl_ms, "p99_itl_ms": metrics.p99_itl_ms, "input_lens": [output.prompt_len for output in outputs], "output_lens": actual_output_lens, "ttfts": [output.ttft for output in outputs], "itls": [output.itl for output in outputs], "generated_texts": [output.generated_text for output in outputs], "errors": [output.error for output in outputs], } return result def main(args: argparse.Namespace): print(args) random.seed(args.seed) np.random.seed(args.seed) backend = args.backend model_id = args.model tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model if args.base_url is not None: api_url = f"{args.base_url}{args.endpoint}" else: api_url = f"http://{args.host}:{args.port}{args.endpoint}" tokenizer = get_tokenizer(tokenizer_id, trust_remote_code=args.trust_remote_code) if args.dataset is not None: warnings.warn( "The '--dataset' argument will be deprecated in the next " "release. Please use '--dataset-name' and " "'--dataset-path' in the future runs.", stacklevel=2) input_requests = sample_sharegpt_requests( dataset_path=args.dataset, num_requests=args.num_prompts, tokenizer=tokenizer, fixed_output_len=args.sharegpt_output_len, ) elif args.dataset_name == "sharegpt": input_requests = sample_sharegpt_requests( dataset_path=args.dataset_path, num_requests=args.num_prompts, tokenizer=tokenizer, fixed_output_len=args.sharegpt_output_len, ) elif args.dataset_name == "sonnet": # Do not format the prompt, pass to message directly if args.backend == "openai-chat": input_requests = sample_sonnet_requests( dataset_path=args.dataset_path, num_requests=args.num_prompts, input_len=args.sonnet_input_len, output_len=args.sonnet_output_len, prefix_len=args.sonnet_prefix_len, tokenizer=tokenizer, ) input_requests = [(prompt, prompt_len, output_len) for prompt, prompt_formatted, prompt_len, output_len in input_requests] else: assert ( tokenizer.chat_template or tokenizer.default_chat_template ), "Tokenizer/model must have chat template for sonnet dataset." input_requests = sample_sonnet_requests( dataset_path=args.dataset_path, num_requests=args.num_prompts, input_len=args.sonnet_input_len, output_len=args.sonnet_output_len, prefix_len=args.sonnet_prefix_len, tokenizer=tokenizer, ) input_requests = [(prompt_formatted, prompt_len, output_len) for prompt, prompt_formatted, prompt_len, output_len in input_requests] elif args.dataset_name == "random": input_requests = sample_random_requests( input_len=args.random_input_len, output_len=args.random_output_len, num_prompts=args.num_prompts, range_ratio=args.random_range_ratio, tokenizer=tokenizer, ) else: raise ValueError(f"Unknown dataset: {args.dataset_name}") benchmark_result = asyncio.run( benchmark( backend=backend, api_url=api_url, model_id=model_id, tokenizer=tokenizer, input_requests=input_requests, best_of=args.best_of, use_beam_search=args.use_beam_search, request_rate=args.request_rate, disable_tqdm=args.disable_tqdm, )) # Save config and results to json if args.save_result: result_json: Dict[str, Any] = {} # Setup current_dt = datetime.now().strftime("%Y%m%d-%H%M%S") result_json["date"] = current_dt result_json["backend"] = backend result_json["model_id"] = model_id result_json["tokenizer_id"] = tokenizer_id result_json["best_of"] = args.best_of result_json["use_beam_search"] = args.use_beam_search result_json["num_prompts"] = args.num_prompts # Metadata if args.metadata: for item in args.metadata: if "=" in item: kvstring = item.split("=") result_json[kvstring[0].strip()] = kvstring[1].strip() else: raise ValueError( "Invalid metadata format. Please use KEY=VALUE format." ) # Traffic result_json["request_rate"] = ( args.request_rate if args.request_rate < float("inf") else "inf") # Merge with benchmark result result_json = {**result_json, **benchmark_result} # Save to file base_model_id = model_id.split("/")[-1] file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" #noqa if args.result_filename: file_name = args.result_filename if args.result_dir: file_name = os.path.join(args.result_dir, file_name) with open(file_name, "w") as outfile: json.dump(result_json, outfile) if __name__ == "__main__": parser = FlexibleArgumentParser( description="Benchmark the online serving throughput.") parser.add_argument( "--backend", type=str, default="aphrodite", choices=list(ASYNC_REQUEST_FUNCS.keys()), ) parser.add_argument( "--base-url", type=str, default=None, help="Server or API base url if not using http host and port.", ) parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--port", type=int, default=8000) parser.add_argument( "--endpoint", type=str, default="/v1/completions", help="API endpoint.", ) parser.add_argument( "--dataset", type=str, default=None, help="Path to the ShareGPT dataset, will be deprecated in the " "next release.", ) parser.add_argument( "--dataset-name", type=str, default="sharegpt", choices=["sharegpt", "sonnet", "random"], help="Name of the dataset to benchmark on.", ) parser.add_argument("--dataset-path", type=str, default=None, help="Path to the dataset.") parser.add_argument( "--model", type=str, required=True, help="Name of the model.", ) parser.add_argument( "--tokenizer", type=str, help= "Name or path of the tokenizer, if not using the default tokenizer.", # noqa: E501 ) parser.add_argument( "--best-of", type=int, default=1, help="Generates `best_of` sequences per prompt and " "returns the best one.", ) parser.add_argument("--use-beam-search", action="store_true") parser.add_argument( "--num-prompts", type=int, default=1000, help="Number of prompts to process.", ) parser.add_argument( "--sharegpt-output-len", type=int, default=None, help="Output length for each request. Overrides the output length " "from the ShareGPT dataset.") parser.add_argument( "--sonnet-input-len", type=int, default=550, help= "Number of input tokens per request, used only for sonnet dataset.", ) parser.add_argument( "--sonnet-output-len", type=int, default=150, help= "Number of output tokens per request, used only for sonnet dataset.", ) parser.add_argument( "--sonnet-prefix-len", type=int, default=200, help= "Number of prefix tokens per request, used only for sonnet dataset.", ) parser.add_argument( "--random-input-len", type=int, default=1024, help= "Number of input tokens per request, used only for random sampling.", ) parser.add_argument( "--random-output-len", type=int, default=128, help= "Number of output tokens per request, used only for random sampling.", ) parser.add_argument( "--random-range-ratio", type=float, default=1.0, help="Range of sampled ratio of input/output length, " "used only for random sampling.", ) parser.add_argument( "--request-rate", type=float, default=float("inf"), help="Number of requests per second. If this is inf, " "then all the requests are sent at time 0. " "Otherwise, we use Poisson process to synthesize " "the request arrival times.", ) parser.add_argument("--seed", type=int, default=0) parser.add_argument( "--trust-remote-code", action="store_true", help="Trust remote code from huggingface", ) parser.add_argument( "--disable-tqdm", action="store_true", help="Specify to disable tqdm progress bar.", ) parser.add_argument( "--save-result", action="store_true", help="Specify to save benchmark results to a json file", ) parser.add_argument( "--metadata", metavar="KEY=VALUE", nargs="*", help="Key-value pairs (e.g, --metadata version=0.3.3 tp=1) " "for metadata of this run to be saved in the result JSON file " "for record keeping purposes.", ) parser.add_argument( "--result-dir", type=str, default=None, help="Specify directory to save benchmark json results." "If not specified, results are saved in the current directory.", ) parser.add_argument( "--result-filename", type=str, default=None, help="Specify the filename to save benchmark json results." "If not specified, results will be saved in " "{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json" " format.", ) args = parser.parse_args() main(args)