/* * Adapted from * https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp * Copyright (c) 2023, The PygmalionAI team. * Copyright (c) 2023, The vLLM team. * Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "../cuda_compat.h" #include "attention_dtypes.h" #include #include namespace aphrodite { // Q*K^T operation. template inline __device__ float qk_dot_(const Vec (&q)[N], const Vec (&k)[N]) { using A_vec = typename FloatVec::Type; // Compute the parallel products for Q*K^T (treat vector lanes separately). A_vec qk_vec = mul(q[0], k[0]); #pragma unroll for (int ii = 1; ii < N; ++ii) { qk_vec = aphrodite::fma(q[ii], k[ii], qk_vec); } // Finalize the reduction across lanes. float qk = sum(qk_vec); #pragma unroll for (int mask = THREAD_GROUP_SIZE / 2; mask >= 1; mask /= 2) { qk += APHRODITE_SHFL_XOR_SYNC(qk, mask); } return qk; } template struct Qk_dot { template static inline __device__ float dot(const Vec (&q)[N], const Vec (&k)[N]) { return qk_dot_(q, k); } }; } // namespace aphrodite