""" This example shows how to use vLLM for running offline inference with the correct prompt format on vision language models. For most models, the prompt format should follow corresponding examples on HuggingFace model repository. """ import os import librosa from transformers import AutoTokenizer from aphrodite import LLM, SamplingParams from aphrodite.common.utils import FlexibleArgumentParser # Input audio and question audio_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mary_had_lamb.ogg") audio_and_sample_rate = librosa.load(audio_path, sr=None) question = "What is recited in the audio?" # Ultravox 0.3 def run_ultravox(question): model_name = "fixie-ai/ultravox-v0_3" tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [{ 'role': 'user', 'content': f"<|reserved_special_token_0|>\n{question}" }] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) llm = LLM(model=model_name) stop_token_ids = None return llm, prompt, stop_token_ids model_example_map = { "ultravox": run_ultravox, } def main(args): model = args.model_type if model not in model_example_map: raise ValueError(f"Model type {model} is not supported.") llm, prompt, stop_token_ids = model_example_map[model](question) # We set temperature to 0.2 so that outputs can be different # even when all prompts are identical when running batch inference. sampling_params = SamplingParams(temperature=0.2, max_tokens=64, stop_token_ids=stop_token_ids) assert args.num_prompts > 0 if args.num_prompts == 1: # Single inference inputs = { "prompt": prompt, "multi_modal_data": { "audio": audio_and_sample_rate }, } else: # Batch inference inputs = [{ "prompt": prompt, "multi_modal_data": { "audio": audio_and_sample_rate }, } for _ in range(args.num_prompts)] outputs = llm.generate(inputs, sampling_params=sampling_params) for o in outputs: generated_text = o.outputs[0].text print(generated_text) if __name__ == "__main__": parser = FlexibleArgumentParser( description='Demo on using Aphrodite for offline inference with ' 'audio language models') parser.add_argument('--model-type', '-m', type=str, default="ultravox", choices=model_example_map.keys(), help='Huggingface "model_type".') parser.add_argument('--num-prompts', type=int, default=1, help='Number of prompts to run.') args = parser.parse_args() main(args)