from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union try: from aphrodite.attention.backends.flash_attn import FlashAttentionMetadata except ModuleNotFoundError: # aphrodite_flash_attn is not installed, use the identical ROCm FA metadata from aphrodite.attention.backends.rocm_flash_attn import ( ROCmFlashAttentionMetadata as FlashAttentionMetadata, ) import torch from aphrodite import _custom_ops as ops from aphrodite.common.sequence import (CompletionSequenceGroupOutput, IntermediateTensors, Logprob, SamplerOutput, SequenceGroupMetadata, SequenceOutput) from aphrodite.distributed import get_pp_group from aphrodite.modeling.model_loader.tensorizer import TensorizerConfig from aphrodite.task_handler.model_runner import ( GPUModelRunnerBase, ModelInputForGPUWithSamplingMetadata) from aphrodite.task_handler.model_runner_base import ( BroadcastableModelInput, _init_attn_metadata_from_tensor_dict, _init_frozen_model_input_from_tensor_dict, _init_sampling_metadata_from_tensor_dict) if TYPE_CHECKING: from aphrodite.attention.backends.abstract import AttentionBackend @dataclass class ModelOutput: """The output of a single model forward pass. The sampler_output_ready_event is set when the tensors in sampler_output are ready (the model+sampler forward pass has completed). We use the event to synchronize the GPU->CPU transfer, which we want to only run when the data has been written to the GPU tensors. Until the event is ready, the tensors in sampler_output will have garbage data. There are two scenarios: 1. The output tensors are ready and we can pythonize them immediately. 2. The output tensors are not ready and we need to wait for the event to be ready. """ sampler_output: SamplerOutput sampler_output_ready_event: torch.cuda.Event sampled_token_ids: Optional[torch.Tensor] = None pythonized: bool = False def pythonize( self, input_metadata: "StatefulModelInput", copy_stream: torch.cuda.Stream, pinned_sampled_token_buffer: torch.Tensor, ) -> None: """Pythonize the output. Blocking.""" if not self.pythonized: self._pythonize_sampler_output( input_metadata, copy_stream, pinned_sampled_token_buffer, True ) self.pythonized = True def maybe_pythonize( self, input_metadata: "StatefulModelInput", copy_stream: torch.cuda.Stream, pinned_sampled_token_buffer: torch.Tensor, ) -> None: """Pythonize the output if ready, else return None. Non-blocking.""" if not self.pythonized: self.pythonized = self._pythonize_sampler_output( input_metadata, copy_stream, pinned_sampled_token_buffer, False ) def _pythonize_sampler_output( self, input_metadata: "StatefulModelInput", copy_stream: torch.cuda.Stream, pinned_sampled_token_buffer: torch.Tensor, blocking: bool, ) -> bool: """ If blocking is set, will block until the forward pass for the output is ready and pythonize the output. """ assert self.sampled_token_ids is not None if not blocking and not self.sampler_output_ready_event.query(): return False if blocking: self.sampler_output_ready_event.synchronize() with torch.cuda.stream(copy_stream): _pythonize_sampler_output( input_metadata, self.sampler_output, pinned_sampled_token_buffer, self.sampled_token_ids, ) return True @dataclass(frozen=False) class StatefulModelInput(BroadcastableModelInput): # actual frozen model input dataclass passed to _base_model_runner frozen_model_input: Optional[ModelInputForGPUWithSamplingMetadata] = None # list of model outputs for each step, may not be all pythonized cached_outputs: List[ModelOutput] = field(default_factory=list) # used to pass sampled token ids from the last step to the current step for # TP workers. Used to append to end of outputs and used by advance_step last_sampled_token_ids: Optional[torch.Tensor] = None current_step: int = 0 is_multi_step: bool = True is_last_step: bool = False is_first_multi_step: bool = False # ping-pong data structures for multi-step to wait on the previous step step_cuda_events: List[torch.cuda.Event] = field( default_factory=lambda: [torch.cuda.Event(blocking=True)] * 2 ) num_seqs: int = -1 num_queries: int = -1 def as_broadcastable_tensor_dict(self) -> Dict[str, Any]: assert self.frozen_model_input is not None tensor_dict = self.frozen_model_input.as_broadcastable_tensor_dict() new_tensor_dict = { "last_sampled_token_ids": self.last_sampled_token_ids, "current_step": self.current_step, "is_multi_step": self.is_multi_step, "is_last_step": self.is_last_step, "is_first_multi_step": self.is_first_multi_step, "num_seqs": self.num_seqs, "num_queries": self.num_queries, } tensor_dict.update(new_tensor_dict) return tensor_dict @classmethod def from_broadcasted_tensor_dict( cls, tensor_dict: Dict[str, Any], attn_backend: Optional["AttentionBackend"] = None, ) -> "StatefulModelInput": tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict) if attn_backend is not None: tensor_dict = _init_attn_metadata_from_tensor_dict( attn_backend, tensor_dict ) tensor_dict = _init_frozen_model_input_from_tensor_dict( ModelInputForGPUWithSamplingMetadata, tensor_dict ) return cls(**tensor_dict) def record_step_event(self, current_stream: torch.cuda.Stream): # record the event for the current step so that the next step can sync # on it. We modulo by 2 to keep the events in a circular buffer and # support any attn backends that may be supported in the future. ie # Flashinfer would want two DecodeWrappers to overlap the CPU and GPU. self.step_cuda_events[self.current_step & 1] = torch.cuda.Event( blocking=True ) self.step_cuda_events[self.current_step & 1].record(current_stream) def wait_previous_step(self): # These cuda events are an explicit synchronization to ensure that # advance_step() (for other attn backends that may be supported in the # future) do not clobber any data structures that is also used by any # enqueued forwards steps. For distributed case, only a single event is # needed, but for single GPU case, since we can let the CPU run much # further ahead, two events allow us to overlap the advance_step with # the previous forward (ie using two DecodeWrappers for flashinfer # backend) self.step_cuda_events[(self.current_step + 1) & 1].wait() def add_sampler_output( self, sampler_output: SamplerOutput, sampled_token_ids: Optional[torch.Tensor] = None, ): self.cached_outputs.append( ModelOutput( sampler_output=sampler_output, sampler_output_ready_event=None, sampled_token_ids=sampled_token_ids, pythonized=False, ) ) # MutableModelInputForGPUWithMultiStepMetadata is not subclass of # ModelInputForGPU but it wraps the actual input dataclass and adds multi-step # metadata # mypy: disable-error-code=type-var class MultiStepModelRunner(GPUModelRunnerBase[StatefulModelInput]): # mypy: enable-error-code=type-var def __init__(self, base_model_runner: GPUModelRunnerBase, *args, **kwargs): super().__init__(*args, **kwargs) # uses the base model runner to execute the model and wraps it with # multi-step logic self._base_model_runner: GPUModelRunnerBase = base_model_runner self.is_multi_step = self.scheduler_config.is_multi_step # used to copy tensors from GPU to CPU asynchronously self._copy_stream = torch.cuda.Stream() self.pinned_sampled_token_ids: Optional[torch.Tensor] = None def make_model_input_from_broadcasted_tensor_dict( self, tensor_dict: Dict[str, Any] ) -> StatefulModelInput: model_input = StatefulModelInput.from_broadcasted_tensor_dict( tensor_dict, attn_backend=self.attn_backend, ) return model_input def prepare_model_input( self, seq_group_metadata_list: List[SequenceGroupMetadata], virtual_engine: int = 0, finished_requests_ids: Optional[List[str]] = None, ) -> StatefulModelInput: frozen_model_input = self._base_model_runner.prepare_model_input( seq_group_metadata_list, virtual_engine, finished_requests_ids ) model_input = StatefulModelInput( frozen_model_input=frozen_model_input, num_seqs=len(frozen_model_input.seq_lens), num_queries=len(frozen_model_input.query_lens), ) return model_input @torch.inference_mode() def execute_model( self, model_input: StatefulModelInput, kv_caches: List[torch.Tensor], intermediate_tensors: Optional[IntermediateTensors] = None, num_steps: int = 1, ) -> Optional[Union[List[SamplerOutput], IntermediateTensors]]: """ Execute the model for a single step and update multi-step metadata """ assert num_steps == 1, "MultiStepModelRunner only supports num_steps=1" frozen_model_input = model_input.frozen_model_input assert frozen_model_input is not None # path for warm up runs if not model_input.is_multi_step: return self._base_model_runner.execute_model( frozen_model_input, kv_caches, intermediate_tensors, num_steps ) # make sure we skip the sampler on the lask rank and only pythonize # if CPU is ahead. if self.is_driver_worker and get_pp_group().is_last_rank: if self.pinned_sampled_token_ids is None: self.pinned_sampled_token_ids = torch.zeros( (self.scheduler_config.max_num_seqs, 1), dtype=torch.long, device="cpu", pin_memory=True, ) self._base_model_runner.model.sampler.include_gpu_probs_tensor = ( True ) if frozen_model_input.sampling_metadata: frozen_model_input.sampling_metadata.skip_sampler_cpu_output = ( True ) # some pre-execute model logic for multi-step: # - if it's the first step, we need to reset the sampling tensors # - if it's not the first step, we need to advance the step using the # appended sampler output from last iteration # - also maybe pythonize if CPU is ahead of GPU current_stream = torch.cuda.current_stream() if not model_input.is_first_multi_step: # Explicitly block on the previous step's forward to make sure we # don't clobber any GPU tensors still in use. # This is not needed for flashattn backend, but for other attn # backends such as flashinfer that performs extra CPU operations on # input metadata we may need to synchronize any CPU operations that # might clobber enqueued forwards. (prevents CPU from running too # far ahead if needed) model_input.wait_previous_step() model_input = self._advance_step( model_input, model_input.cached_outputs[-1].sampler_output ) # Execute the model output = self._base_model_runner.execute_model( frozen_model_input, kv_caches, intermediate_tensors, num_steps=1 ) # record the event for the current step so that the next step can sync model_input.record_step_event(current_stream) if get_pp_group().is_last_rank and self.is_driver_worker: assert ( len(output) == 1 ), "MultiStepModelRunner requires single-step base_models" # event for the pythonization so that we only pythonize if the # tensors are ready. May be able to be combined with the step event output_ready_event = torch.cuda.Event() output_ready_event.record(current_stream) if self.parallel_config.pipeline_parallel_size > 1: output[0].sampled_token_ids_cpu = output[ 0 ].sampled_token_ids.cpu() model_input.cached_outputs.append( ModelOutput( output[0], output_ready_event, output[0].sampled_token_ids, False, ) ) # make sure we dont try to serialize any GPU tensors output[0].sampled_token_ids = None output[0].sampled_token_probs = None output[0].logprobs = None # Pythonize the output if CPU is ahead and the previous step is # ready. for model_output in model_input.cached_outputs: model_output.maybe_pythonize( model_input, self._copy_stream, self.pinned_sampled_token_ids, ) model_input.current_step += 1 if not get_pp_group().is_last_rank: # Should be IntermediateTensors assert isinstance(output, IntermediateTensors) return output if not self.is_driver_worker: return [] # Pythonize the output and block if needed since it is the last step if model_input.is_last_step: outputs = [] for output in model_input.cached_outputs: output.pythonize( model_input, self._copy_stream, self.pinned_sampled_token_ids, ) outputs.append(output.sampler_output) return outputs # should be [SamplerOutput] return output def _update_sampling_metadata( self, sampling_metadata, num_seqs, num_queries ): assert sampling_metadata.num_prompts == 0 assert len(sampling_metadata.seq_groups) == num_queries assert sampling_metadata.selected_token_indices.shape == (num_queries,) # assert sampling_metadata.categorized_sample_indices == TODO: Add if needed # noqa: E501 # Verify that all sequences are decodes for i in range(num_queries): seq_group = sampling_metadata.seq_groups[i] assert seq_group.is_prompt is False # No prompt assert seq_group.prompt_logprob_indices == [] # No prompt assert seq_group.sample_indices == [i] # Simple assert seq_group.seq_len is None # Decode assert seq_group.query_len is None # Decode def _advance_step( self, model_input: StatefulModelInput, out: SamplerOutput ) -> StatefulModelInput: frozen_model_input = model_input.frozen_model_input assert frozen_model_input is not None assert frozen_model_input.attn_metadata is not None num_seqs = model_input.num_seqs num_queries = model_input.num_queries assert num_seqs > 0 assert num_queries > 0 assert num_seqs >= num_queries attn_metadata = frozen_model_input.attn_metadata assert isinstance(attn_metadata, FlashAttentionMetadata) attn_metadata.advance_step(num_seqs, num_queries) # Update GPU tensors ops.advance_step( num_seqs=num_seqs, num_queries=num_queries, block_size=self.block_size, input_tokens=frozen_model_input.input_tokens, sampled_token_ids=model_input.cached_outputs[-1].sampled_token_ids, input_positions=frozen_model_input.input_positions, seq_lens=attn_metadata.seq_lens_tensor, slot_mapping=attn_metadata.slot_mapping, block_tables=attn_metadata.block_tables, ) if frozen_model_input.seq_lens is not None: for i in range(num_queries): frozen_model_input.seq_lens[i] = attn_metadata.seq_lens[i] return model_input def load_model(self) -> None: return self._base_model_runner.load_model() def save_sharded_state( self, path: str, pattern: Optional[str] = None, max_size: Optional[int] = None, ) -> None: return self._base_model_runner.save_sharded_state( path, pattern, max_size ) def save_tensorized_model( self, tensorizer_config: TensorizerConfig ) -> None: return self._base_model_runner.save_tensorized_model(tensorizer_config) def profile_run(self) -> None: return self._base_model_runner.profile_run() def remove_all_loras(self): return self._base_model_runner.remove_all_loras() def capture_model(self, kv_caches: List[List]) -> None: return self._base_model_runner.capture_model(kv_caches) @property def vocab_size(self) -> int: return self._base_model_runner.vocab_size def _pythonize_sampler_output( model_input: StatefulModelInput, output: SamplerOutput, pinned_sampled_token_buffer: torch.Tensor, sampled_token_ids: torch.Tensor, ) -> None: """This function is only called when the output tensors are ready. See ModelOutput """ assert model_input.frozen_model_input is not None frozen_model_input = model_input.frozen_model_input assert frozen_model_input.sampling_metadata is not None # samples generation should have been skipped assert not output.outputs pinned_buffer = pinned_sampled_token_buffer[: model_input.num_queries] # CPU GPU sync pinned_buffer = pinned_buffer.copy_(sampled_token_ids, non_blocking=False) # this will not block as the tensors are already on CPU samples_list = pinned_buffer.tolist() sampling_metadata = frozen_model_input.sampling_metadata for seq_group, sample_result in zip( sampling_metadata.seq_groups, samples_list ): seq_ids = seq_group.seq_ids next_token_ids = sample_result parent_ids = [0] seq_outputs: List[SequenceOutput] = [] if seq_group.sampling_params.logits_processors: assert ( len(seq_group.sampling_params.logits_processors) == 0 ), "Logits Processors are not supported in multi-step decoding" for parent_id, next_token_id in zip(parent_ids, next_token_ids): # TODO(will): support logprobs # Hard coded logprob seq_outputs.append( SequenceOutput( seq_ids[parent_id], next_token_id, {next_token_id: Logprob(logprob=-1)}, ) ) output.outputs.append(CompletionSequenceGroupOutput(seq_outputs, None)) assert len(output.outputs) > 0