from typing import Dict, List, Optional, Tuple import torch from aphrodite.common.sequence import SamplerOutput, SequenceGroupMetadata from aphrodite.spec_decode.interfaces import SpeculativeProposals from aphrodite.spec_decode.top1_proposer import Top1Proposer from aphrodite.task_handler.worker_base import LoraNotSupportedWorkerBase class NGramWorker(LoraNotSupportedWorkerBase): """NGramWorker provides a light drafter without need for model. Current NGramWorker only implement prompt lookup decoding, and in future we may also do RAG type drafter and other scenerios which don't rely on LLM model to give proposals. """ def __init__(self, *args, **kwargs): # Get local_rank/vocab_size from kwargs attribute self.local_rank = kwargs["local_rank"] self.vocab_size = kwargs["model_config"].get_vocab_size() # Lazy initialization list. self._proposer: Top1Proposer def set_ngram_window_size(self, ngram_prompt_lookup_min: int, ngram_prompt_lookup_max: int): # Search valid candidate window between # ngram_prompt_lookup_min/ngram_prompt_lookup_max self.ngram_prompt_lookup_max = ngram_prompt_lookup_max self.ngram_prompt_lookup_min = ngram_prompt_lookup_min def init_device(self): self.device = torch.device(f"cuda:{self.local_rank}") self.load_model = lambda *args, **kwargs: None # Current only support Top1Proposer self._proposer = Top1Proposer( self, device=self.device, vocab_size=self.vocab_size, ) def set_include_gpu_probs_tensor(self): # NGram don't need gpu sampler pass def execute_model( self, seq_group_metadata_list: List[SequenceGroupMetadata], blocks_to_swap_in: Optional[Dict[int, int]], blocks_to_swap_out: Optional[Dict[int, int]], blocks_to_copy: Optional[Dict[int, List[int]]], ) -> None: """NGram doesn't depend on model execution, just pass this function""" pass def determine_num_available_blocks(self) -> None: """NGram doesn't depend on model execution, no need to check blocks""" pass def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks: int) -> None: """As there is no cache need to handle, just pass this function""" pass def get_cache_block_size_bytes(self): """Return the size of a cache block in bytes.""" return 0 def sampler_output( self, seq_group_metadata_list: List[SequenceGroupMetadata], blocks_to_swap_in: Dict[int, int], blocks_to_swap_out: Dict[int, int], blocks_to_copy: Dict[int, List[int]], sample_len: int, ) -> Tuple[Optional[List[SamplerOutput]], bool]: """NGram match algo to pick proposal candidate. Returns the list of sampler output, one per SequenceGroupMetadata. """ self._raise_if_unsupported( seq_group_metadata_list, blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy, ) arr = [] has_spec_out = False for seq_group_metadata in seq_group_metadata_list: seq_data = next(iter(seq_group_metadata.seq_data.values())) input_ids = torch.as_tensor(seq_data.get_token_ids(), dtype=torch.long, device=self.device) input_length = seq_data.get_len() for ngram_size in range( min(self.ngram_prompt_lookup_max, input_length - 1), self.ngram_prompt_lookup_min, -1, ): ngram_tensor = input_ids[-1 * ngram_size:] windows = input_ids.unfold(dimension=0, size=ngram_size, step=1) matches = (windows == ngram_tensor).all(dim=1) match_indices = matches.nonzero(as_tuple=True)[0] if match_indices.size()[0] > 1: has_spec_out = True res = seq_data.get_token_ids() res = res[match_indices[0] + ngram_size:match_indices[0] + ngram_size + sample_len] res_len = len(res) # pad 0 towards output as sample_len tokens required res += [0] * (sample_len - res_len) break else: # if no candidate found, fill with 0 res = [0] * sample_len arr.append(res) if not has_spec_out: return None, False outputs = [] token_ids = torch.as_tensor(arr, dtype=torch.long, device=self.device) indices = token_ids.unsqueeze(2) token_probs = torch.zeros( (len(seq_group_metadata_list), sample_len, self.vocab_size), dtype=torch.float32, device=self.device, ) token_probs.scatter_(2, indices, 1) for i in range(len(seq_group_metadata_list)): outputs.append( SamplerOutput( outputs=None, sampled_token_probs=token_probs[i], sampled_token_ids=token_ids[i], )) return outputs, False def get_spec_proposals( self, seq_group_metadata_list: List[SequenceGroupMetadata], blocks_to_swap_in: Dict[int, int], blocks_to_swap_out: Dict[int, int], blocks_to_copy: Dict[int, List[int]], max_proposal_len: int, ) -> SpeculativeProposals: """Produce speculations given an input batch of sequences. The number of speculative tokens per sequence is determined by max_proposal_len. """ return self._proposer.get_proposals( seq_group_metadata_list, blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy, max_proposal_len, ) def _raise_if_unsupported( self, seq_group_metadata_list: List[SequenceGroupMetadata], blocks_to_swap_in: Dict[int, int], blocks_to_swap_out: Dict[int, int], blocks_to_copy: Dict[int, List[int]], ) -> None: """NGramWorker does not yet implement support for cache swap operations or beam search. """ if any([blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy]): raise NotImplementedError( "NGramWorker does not support cache operations") if any( len(seq_group_metadata.seq_data.keys()) != 1 for seq_group_metadata in seq_group_metadata_list): raise NotImplementedError( "NGramWorker does not support beam search.")