"""Custom activation functions.""" import math from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from aphrodite._C import ops from aphrodite.distributed import (divide, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) from aphrodite.modeling.utils import set_weight_attrs from aphrodite.quantization import QuantizationConfig class SiluAndMul(nn.Module): """An activation function for SwiGLU. The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2. Shapes: x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d) """ def _forward(self, x: torch.Tensor) -> torch.Tensor: """PyTorch-native implementation equivalent to forward().""" d = x.shape[-1] // 2 return F.silu(x[..., :d]) * x[..., d:] def forward(self, x: torch.Tensor) -> torch.Tensor: d = x.shape[-1] // 2 output_shape = (x.shape[:-1] + (d, )) out = torch.empty(output_shape, dtype=x.dtype, device=x.device) ops.silu_and_mul(out, x) return out class GeluAndMul(nn.Module): """An activation function for GeGLU. The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2. Shapes: x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d) return: (batch_size, seq_len, d) or (num_tokens, d) """ def __init__(self, approximate: str = "none"): super().__init__() self.approximate = approximate if approximate not in ("none", "tanh"): raise ValueError(f"Unknown approximate mode: {approximate}") def _forward(self, x: torch.Tensor) -> torch.Tensor: """PyTorch-native implementation equivalent to forward().""" d = x.shape[-1] // 2 return F.gelu(x[..., :d], approximate=self.approximate) * x[..., d:] def forward(self, x: torch.Tensor) -> torch.Tensor: d = x.shape[-1] // 2 output_shape = (x.shape[:-1] + (d, )) out = torch.empty(output_shape, dtype=x.dtype, device=x.device) if self.approximate == "none": ops.gelu_and_mul(out, x) elif self.approximate == "tanh": ops.gelu_tanh_and_mul(out, x) return out class NewGELU(nn.Module): def _forward(self, x: torch.Tensor) -> torch.Tensor: """PyTorch-native implementation equivalent to forward().""" c = math.sqrt(2.0 / math.pi) return 0.5 * x * (1.0 + torch.tanh(c * (x + 0.044715 * torch.pow(x, 3.0)))) def forward(self, x: torch.Tensor) -> torch.Tensor: out = torch.empty_like(x) ops.gelu_new(out, x) return out class FastGELU(nn.Module): def _forward(self, x: torch.Tensor) -> torch.Tensor: """PyTorch-native implementation equivalent to forward().""" return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x))) def forward(self, x: torch.Tensor) -> torch.Tensor: out = torch.empty_like(x) ops.gelu_fast(out, x) return out class ScaledActivation(nn.Module): """An activation function with post-scale parameters. This is used for some quantization methods like AWQ. """ def __init__( self, act_module: nn.Module, intermediate_size: int, input_is_parallel: bool = True, params_dtype: Optional[torch.dtype] = None, ): super().__init__() self.act = act_module self.input_is_parallel = input_is_parallel if input_is_parallel: tp_size = get_tensor_model_parallel_world_size() intermediate_size_per_partition = divide(intermediate_size, tp_size) else: intermediate_size_per_partition = intermediate_size if params_dtype is None: params_dtype = torch.get_default_dtype() self.scales = nn.Parameter( torch.empty(intermediate_size_per_partition, dtype=params_dtype)) set_weight_attrs(self.scales, {"weight_loader": self.weight_loader}) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.act(x) / self.scales def weight_loader(self, param: nn.Parameter, loaded_weight: torch.Tensor): param_data = param.data if self.input_is_parallel: tp_rank = get_tensor_model_parallel_rank() shard_size = param_data.shape[0] start_idx = tp_rank * shard_size loaded_weight = loaded_weight.narrow(0, start_idx, shard_size) assert param_data.shape == loaded_weight.shape param_data.copy_(loaded_weight) _ACTIVATION_REGISTRY = { "gelu": nn.GELU(), "gelu_fast": FastGELU(), "gelu_new": NewGELU(), "gelu_pytorch_tanh": nn.GELU(approximate="tanh"), "relu": nn.ReLU(), } def get_act_fn( act_fn_name: str, quant_config: Optional[QuantizationConfig] = None, intermediate_size: Optional[int] = None, input_is_parallel: bool = True, params_dtype: Optional[torch.dtype] = None, ) -> nn.Module: """Get an activation function by name.""" act_fn_name = act_fn_name.lower() if act_fn_name not in _ACTIVATION_REGISTRY: raise ValueError( f"Activation function {act_fn_name!r} is not supported.") act_fn = _ACTIVATION_REGISTRY[act_fn_name] if (quant_config is not None and act_fn_name in quant_config.get_scaled_act_names()): if intermediate_size is None: raise ValueError("intermediate_size must be specified for scaled " "activation functions.") return ScaledActivation(act_fn, intermediate_size, input_is_parallel, params_dtype) return act_fn