#include "marlin.cuh" #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 800 namespace marlin { template __global__ void awq_marlin_repack_kernel( uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr, int size_k, int size_n) {} } // namespace marlin torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, torch::Tensor& perm, int64_t size_k, int64_t size_n, int64_t num_bits) { TORCH_CHECK_NOT_IMPLEMENTED( false, "marlin_repack_from_gptq(..) requires CUDA_ARCH >= 8.0"); return torch::empty({1, 1}); } #else namespace marlin { template __global__ void awq_marlin_repack_kernel( uint32_t const* __restrict__ b_q_weight_ptr, uint32_t* __restrict__ out_ptr, int size_k, int size_n) { constexpr int pack_factor = 32 / num_bits; int k_tiles = size_k / tile_k_size; int n_tiles = size_n / tile_n_size; int block_k_tiles = div_ceil(k_tiles, gridDim.x); int start_k_tile = blockIdx.x * block_k_tiles; if (start_k_tile >= k_tiles) { return; } int finish_k_tile = min(start_k_tile + block_k_tiles, k_tiles); // Wait until the next thread tile has been loaded to shared memory. auto wait_for_stage = [&]() { // We only have `stages - 2` active fetches since we are double buffering // and can only issue the next fetch when it is guaranteed that the previous // shared memory load is fully complete (as it may otherwise be // overwritten). cp_async_wait(); __syncthreads(); }; extern __shared__ int4 sh[]; constexpr int tile_n_ints = tile_n_size / pack_factor; constexpr int stage_n_threads = tile_n_ints / 4; constexpr int stage_k_threads = tile_k_size; constexpr int stage_size = stage_k_threads * stage_n_threads; auto fetch_to_shared = [&](int pipe, int k_tile_id, int n_tile_id) { if (n_tile_id >= n_tiles) { cp_async_fence(); return; } int first_n = n_tile_id * tile_n_size; int first_n_packed = first_n / pack_factor; int4* sh_ptr = sh + stage_size * pipe; if (threadIdx.x < stage_size) { int k_id = threadIdx.x / stage_n_threads; int n_id = threadIdx.x % stage_n_threads; int first_k = k_tile_id * tile_k_size; cp_async4(&sh_ptr[k_id * stage_n_threads + n_id], reinterpret_cast( &(b_q_weight_ptr[(first_k + k_id) * (size_n / pack_factor) + first_n_packed + (n_id * 4)]))); } cp_async_fence(); }; auto repack_tile = [&](int pipe, int k_tile_id, int n_tile_id) { if (n_tile_id >= n_tiles) { return; } int warp_id = threadIdx.x / 32; int th_id = threadIdx.x % 32; if (warp_id >= 4) { return; } int tc_col = th_id / 4; int tc_row = (th_id % 4) * 2; constexpr int tc_offsets[4] = {0, 1, 8, 9}; int cur_n = warp_id * 16 + tc_col; int cur_n_packed = cur_n / pack_factor; int cur_n_pos = cur_n % pack_factor; constexpr int sh_stride = tile_n_ints; constexpr uint32_t mask = (1 << num_bits) - 1; int4* sh_stage_ptr = sh + stage_size * pipe; uint32_t* sh_stage_int_ptr = reinterpret_cast(sh_stage_ptr); // Undo interleaving int cur_n_pos_unpacked; if constexpr (num_bits == 4) { constexpr int undo_pack[8] = {0, 4, 1, 5, 2, 6, 3, 7}; cur_n_pos_unpacked = undo_pack[cur_n_pos]; } else { constexpr int undo_pack[4] = {0, 2, 1, 3}; cur_n_pos_unpacked = undo_pack[cur_n_pos]; } uint32_t vals[8]; #pragma unroll for (int i = 0; i < 4; i++) { int cur_elem = tc_row + tc_offsets[i]; int packed_src_0 = sh_stage_int_ptr[cur_n_packed + sh_stride * cur_elem]; int packed_src_1 = sh_stage_int_ptr[cur_n_packed + (8 / pack_factor) + sh_stride * cur_elem]; vals[i] = (packed_src_0 >> (cur_n_pos_unpacked * num_bits)) & mask; vals[4 + i] = (packed_src_1 >> (cur_n_pos_unpacked * num_bits)) & mask; } constexpr int tile_size = tile_k_size * tile_n_size / pack_factor; int out_offset = (k_tile_id * n_tiles + n_tile_id) * tile_size; // Result of: // https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/cutlass_extensions/include/cutlass_extensions/interleaved_numeric_conversion.h if constexpr (num_bits == 4) { constexpr int pack_idx[8] = {0, 2, 4, 6, 1, 3, 5, 7}; uint32_t res = 0; #pragma unroll for (int i = 0; i < 8; i++) { res |= vals[pack_idx[i]] << (i * 4); } out_ptr[out_offset + th_id * 4 + warp_id] = res; } else { constexpr int pack_idx[4] = {0, 2, 1, 3}; uint32_t res1 = 0; uint32_t res2 = 0; #pragma unroll for (int i = 0; i < 4; i++) { res1 |= vals[pack_idx[i]] << (i * 8); res2 |= vals[4 + pack_idx[i]] << (i * 8); } out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 0] = res1; out_ptr[out_offset + th_id * 8 + (warp_id * 2) + 1] = res2; } }; auto start_pipes = [&](int k_tile_id, int n_tile_id) { #pragma unroll for (int pipe = 0; pipe < repack_stages - 1; pipe++) { fetch_to_shared(pipe, k_tile_id, n_tile_id + pipe); } wait_for_stage(); }; #pragma unroll for (int k_tile_id = start_k_tile; k_tile_id < finish_k_tile; k_tile_id++) { int n_tile_id = 0; start_pipes(k_tile_id, n_tile_id); while (n_tile_id < n_tiles) { #pragma unroll for (int pipe = 0; pipe < repack_stages; pipe++) { fetch_to_shared((pipe + repack_stages - 1) % repack_stages, k_tile_id, n_tile_id + pipe + repack_stages - 1); repack_tile(pipe, k_tile_id, n_tile_id + pipe); wait_for_stage(); } n_tile_id += repack_stages; } } } } // namespace marlin #define CALL_IF(NUM_BITS) \ else if (num_bits == NUM_BITS) { \ cudaFuncSetAttribute( \ marlin::awq_marlin_repack_kernel, \ cudaFuncAttributeMaxDynamicSharedMemorySize, max_shared_mem); \ marlin::awq_marlin_repack_kernel \ <<>>( \ b_q_weight_ptr, out_ptr, size_k, size_n); \ } torch::Tensor awq_marlin_repack(torch::Tensor& b_q_weight, int64_t size_k, int64_t size_n, int64_t num_bits) { // Verify compatibility with marlin tile of 16x64 TORCH_CHECK(size_k % marlin::tile_k_size == 0, "size_k = ", size_k, " is not divisible by tile_k_size = ", marlin::tile_k_size); TORCH_CHECK(size_n % marlin::tile_n_size == 0, "size_n = ", size_n, " is not divisible by tile_n_size = ", marlin::tile_n_size); TORCH_CHECK(num_bits == 4 || num_bits == 8, "num_bits must be 4 or 8. Got = ", num_bits); int const pack_factor = 32 / num_bits; // Verify B TORCH_CHECK(b_q_weight.size(0) == size_k, "b_q_weight.size(0) = ", b_q_weight.size(0), " is not size_k = ", size_k); TORCH_CHECK((size_n / pack_factor) == b_q_weight.size(1), "Shape mismatch: b_q_weight.size(1) = ", b_q_weight.size(1), ", size_n = ", size_n, ", pack_factor = ", pack_factor); // Verify device and strides TORCH_CHECK(b_q_weight.device().is_cuda(), "b_q_weight is not on GPU"); TORCH_CHECK(b_q_weight.is_contiguous(), "b_q_weight is not contiguous"); TORCH_CHECK(b_q_weight.dtype() == at::kInt, "b_q_weight type is not kInt"); // Alloc buffers const at::cuda::OptionalCUDAGuard device_guard(device_of(b_q_weight)); auto options = torch::TensorOptions() .dtype(b_q_weight.dtype()) .device(b_q_weight.device()); torch::Tensor out = torch::empty( {size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor}, options); // Get ptrs uint32_t const* b_q_weight_ptr = reinterpret_cast(b_q_weight.data_ptr()); uint32_t* out_ptr = reinterpret_cast(out.data_ptr()); // Get dev info int dev = b_q_weight.get_device(); cudaStream_t stream = at::cuda::getCurrentCUDAStream(dev); int blocks; cudaDeviceGetAttribute(&blocks, cudaDevAttrMultiProcessorCount, dev); int max_shared_mem = 0; cudaDeviceGetAttribute(&max_shared_mem, cudaDevAttrMaxSharedMemoryPerBlockOptin, dev); TORCH_CHECK(max_shared_mem > 0); if (false) { } CALL_IF(4) CALL_IF(8) else { TORCH_CHECK(false, "Unsupported repack config: num_bits = ", num_bits); } return out; } #endif torch::Tensor awq_marlin_repack_meta(torch::Tensor& b_q_weight, c10::SymInt size_k, c10::SymInt size_n, int64_t num_bits) { int const pack_factor = 32 / num_bits; auto options = torch::TensorOptions() .dtype(b_q_weight.dtype()) .device(b_q_weight.device()); return torch::empty_symint( {size_k / marlin::tile_size, size_n * marlin::tile_size / pack_factor}, options); }