from typing import List, Set, Tuple import openvino as ov import openvino.properties.hint as hints import torch from loguru import logger import aphrodite.common.envs as envs from aphrodite.common.config import CacheConfig, ModelConfig from aphrodite.common.sequence import ExecuteModelRequest from aphrodite.common.utils import (GiB_bytes, get_distributed_init_method, get_ip, get_open_port, make_async) from aphrodite.executor.executor_base import ExecutorAsyncBase, ExecutorBase from aphrodite.lora.request import LoRARequest from aphrodite.modeling.layers.sampler import SamplerOutput APHRODITE_OPENVINO_KVCACHE_SPACE = envs.APHRODITE_OPENVINO_KVCACHE_SPACE APHRODITE_OPENVINO_CPU_KV_CACHE_PRECISION = ( envs.APHRODITE_OPENVINO_CPU_KV_CACHE_PRECISION) class OpenVINOExecutor(ExecutorBase): uses_ray: bool = False def _init_executor(self) -> None: assert self.device_config.device_type == "openvino" assert self.lora_config is None, "OpenVINO backend doesn't support LoRA" self.model_config = _verify_and_get_model_config(self.model_config) self.cache_config = _verify_and_get_cache_config(self.cache_config) # Instantiate the worker and load the model to CPU. self._init_worker() def _init_worker(self): from aphrodite.worker.openvino_worker import OpenVINOWorker assert ( self.parallel_config.world_size == 1 ), "OpenVINOExecutor only supports single CPU socket currently." distributed_init_method = get_distributed_init_method( get_ip(), get_open_port()) self.driver_worker = OpenVINOWorker( model_config=self.model_config, parallel_config=self.parallel_config, scheduler_config=self.scheduler_config, device_config=self.device_config, cache_config=self.cache_config, load_config=self.load_config, local_rank=0, rank=0, distributed_init_method=distributed_init_method, lora_config=self.lora_config, kv_cache_dtype=self.cache_config.cache_dtype, is_driver_worker=True, ) self.driver_worker.init_device() self.driver_worker.load_model() def determine_num_available_blocks(self) -> Tuple[int, int]: """Determine the number of available KV blocks by invoking the underlying worker. """ return self.driver_worker.determine_num_available_blocks() def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks: int) -> None: """Initialize the KV cache by invoking the underlying worker.""" # NOTE: We log here to avoid multiple logs when number of workers is # greater than one. We could log in the engine, but not all executors # have GPUs. # NOTE: `cpu block` for OpenVINO backend is located on CPU memory but is # referred as `gpu block`. Because we want to reuse the existing block # management procedure. logger.info(f"# CPU blocks: {num_gpu_blocks}") logger.info( f"Minimum concurrency: {num_gpu_blocks * self.cache_config.block_size / self.scheduler_config.max_model_len:.2f}x" # noqa: E501 ) self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks) def execute_model( self, execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]: output = self.driver_worker.execute_model(execute_model_req) return output def add_lora(self, lora_request: LoRARequest) -> bool: return self.driver_worker.add_lora(lora_request) def remove_lora(self, lora_id: int) -> bool: return self.driver_worker.remove_lora(lora_id) def pin_lora(self, lora_id: int) -> bool: return self.driver_worker.pin_lora(lora_id) def list_loras(self) -> Set[int]: return self.driver_worker.list_loras() def add_prompt_adapter(self, prompt_adapter_request) -> bool: raise NotImplementedError( "Soft prompt is currently not supported by the OPENVINO backend.") def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool: raise NotImplementedError( "Soft prompt is currently not supported by the OPENVINO backend.") def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool: raise NotImplementedError( "Soft prompt is currently not supported by the OPENVINO backend.") def list_prompt_adapters(self) -> Set[int]: raise NotImplementedError( "Soft prompt is currently not supported by the OPENVINO backend.") def check_health(self) -> None: # OpenVINOExecutor will always be healthy as long as # it's running. return class OpenVINOExecutorAsync(OpenVINOExecutor, ExecutorAsyncBase): async def execute_model_async( self, execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]: output = await make_async(self.driver_worker.execute_model )(execute_model_req=execute_model_req, ) return output async def check_health_async(self) -> None: # OpenVINOExecutor will always be healthy as long as # it's running. return def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig: if config.dtype != torch.float32: logger.warning( f"Only float32 dtype is supported on OpenVINO, casting from {config.dtype}." # noqa: G004, E501 ) config.dtype = torch.float32 if not config.enforce_eager: logger.warning( "CUDA graph is not supported on OpenVINO backend, fallback to the " "eager mode.") config.enforce_eager = True return config def _verify_and_get_cache_config(config: CacheConfig) -> CacheConfig: if APHRODITE_OPENVINO_CPU_KV_CACHE_PRECISION == "u8": logger.info("KV cache type is overried to u8 via " "APHRODITE_OPENVINO_CPU_KV_CACHE_PRECISION env var.") config.cache_dtype = ov.Type.u8 else: core = ov.Core() inference_precision = core.get_property("CPU", hints.inference_precision) if inference_precision == ov.Type.bf16: config.cache_dtype = ov.Type.bf16 else: config.cache_dtype = ov.Type.f16 if config.block_size != 32: logger.info( f"OpenVINO optimal block size is 32, overriding currently set {config.block_size}" # noqa: G004, E501 ) config.block_size = 32 kv_cache_space = APHRODITE_OPENVINO_KVCACHE_SPACE if kv_cache_space >= 0: if kv_cache_space == 0: config.openvino_kvcache_space_bytes = 4 * GiB_bytes # type: ignore logger.warning( "Environment variable APHRODITE_OPENVINO_KVCACHE_SPACE (GB) " "for OpenVINO backend is not set, using 4 by default.") else: config.openvino_kvcache_space_bytes = kv_cache_space * GiB_bytes # type: ignore else: raise RuntimeError( "Invalid environment variable APHRODITE_OPENVINO_KVCACHE_SPACE" f" {kv_cache_space}, expect a positive integer value.") return config