from functools import lru_cache from typing import List, Union import numpy as np from loguru import logger from aphrodite.common.config import ModelConfig from aphrodite.common.utils import is_list_of from aphrodite.inputs.registry import InputContext from aphrodite.transformers_utils.image_processor import get_video_processor from aphrodite.transformers_utils.tokenizer import get_tokenizer from .base import MultiModalData, MultiModalInputs from .image import ImagePlugin cached_get_video_processor = lru_cache(get_video_processor) cached_get_tokenizer = lru_cache(get_tokenizer) VideoInput = Union[ "np.ndarray", # single video input List["np.ndarray"], # TODO: support more types # List[Image.Image], List[List[Image.Image]], # "torch.Tensor", # List["torch.Tensor"], # List[List["np.ndarrray"]], # List[List["torch.Tensor"]], ] class VideoPlugin(ImagePlugin): """Plugin for video data.""" def get_data_key(self) -> str: return "video" def _get_hf_video_processor(self, model_config: ModelConfig): return cached_get_video_processor( model_config.model, trust_remote_code=model_config.trust_remote_code ) def _default_input_mapper( self, ctx: InputContext, data: MultiModalData[object], ) -> MultiModalInputs: model_config = ctx.model_config # single video input as np.ndarray if isinstance(data, np.ndarray): video_processor = self._get_hf_video_processor(model_config) if video_processor is None: raise RuntimeError( "No HuggingFace processor is available " "to process the image object" ) try: batch_data = video_processor(data, return_tensors="pt").data except Exception: logger.error("Failed to process image (%s)", data) raise return MultiModalInputs(batch_data) elif is_list_of(data, np.ndarray): raise NotImplementedError( "Multi video for a prompt is not supported yet" ) raise TypeError(f"Invalid video type: {type(data)}") def _default_max_multimodal_tokens(self, ctx: InputContext) -> int: return 4096