import asyncio
import codecs
import json
from abc import ABC, abstractmethod
from collections import defaultdict
from functools import lru_cache, partial
from pathlib import Path
from typing import (Any, Awaitable, Dict, Generic, Iterable, List, Literal,
Mapping, Optional, Tuple, TypeVar, Union, cast)
from loguru import logger
# yapf conflicts with isort for this block
# yapf: disable
from openai.types.chat import (ChatCompletionAssistantMessageParam,
ChatCompletionContentPartImageParam)
from openai.types.chat import (
ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam)
from openai.types.chat import (ChatCompletionContentPartRefusalParam,
ChatCompletionContentPartTextParam)
from openai.types.chat import (
ChatCompletionMessageParam as OpenAIChatCompletionMessageParam)
from openai.types.chat import (ChatCompletionMessageToolCallParam,
ChatCompletionToolMessageParam)
# yapf: enable
# pydantic needs the TypedDict from typing_extensions
from pydantic import ConfigDict
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
from typing_extensions import Required, TypeAlias, TypedDict
from aphrodite.common.config import ModelConfig
from aphrodite.multimodal import MultiModalDataDict
from aphrodite.multimodal.utils import (async_get_and_parse_audio,
async_get_and_parse_image,
get_and_parse_audio,
get_and_parse_image)
from aphrodite.transformers_utils.tokenizer import (AnyTokenizer,
MistralTokenizer)
class AudioURL(TypedDict, total=False):
url: Required[str]
"""
Either a URL of the audio or a data URL with base64 encoded audio data.
"""
class ChatCompletionContentPartAudioParam(TypedDict, total=False):
audio_url: Required[AudioURL]
type: Required[Literal["audio_url"]]
"""The type of the content part."""
class CustomChatCompletionContentPartParam(TypedDict, total=False):
__pydantic_config__ = ConfigDict(extra="allow") # type: ignore
type: Required[str]
"""The type of the content part."""
ChatCompletionContentPartParam: TypeAlias = Union[
OpenAIChatCompletionContentPartParam, ChatCompletionContentPartAudioParam,
ChatCompletionContentPartRefusalParam,
CustomChatCompletionContentPartParam]
class CustomChatCompletionMessageParam(TypedDict, total=False):
"""Enables custom roles in the Chat Completion API."""
role: Required[str]
"""The role of the message's author."""
content: Union[str, List[ChatCompletionContentPartParam]]
"""The contents of the message."""
name: str
"""An optional name for the participant.
Provides the model information to differentiate between participants of the
same role.
"""
tool_call_id: Optional[str]
"""Tool call that this message is responding to."""
tool_calls: Optional[Iterable[ChatCompletionMessageToolCallParam]]
"""The tool calls generated by the model, such as function calls."""
ChatCompletionMessageParam = Union[OpenAIChatCompletionMessageParam,
CustomChatCompletionMessageParam]
# TODO: Make fields ReadOnly once mypy supports it
class ConversationMessage(TypedDict, total=False):
role: Required[str]
"""The role of the message's author."""
content: Optional[str]
"""The contents of the message"""
tool_call_id: Optional[str]
"""Tool call that this message is responding to."""
name: Optional[str]
"""The name of the function to call"""
tool_calls: Optional[Iterable[ChatCompletionMessageToolCallParam]]
"""The tool calls generated by the model, such as function calls."""
ModalityStr = Literal["image", "audio", "video"]
_T = TypeVar("_T")
class BaseMultiModalItemTracker(ABC, Generic[_T]):
"""
Tracks multi-modal items in a given request and ensures that the number
of multi-modal items in a given request does not exceed the configured
maximum per prompt.
"""
def __init__(self, model_config: ModelConfig, tokenizer: AnyTokenizer):
super().__init__()
self._model_config = model_config
self._tokenizer = tokenizer
self._allowed_items = (model_config.multimodal_config.limit_per_prompt
if model_config.multimodal_config else {})
self._consumed_items = {k: 0 for k in self._allowed_items}
self._items: List[_T] = []
@staticmethod
@lru_cache(maxsize=None)
def _cached_token_str(tokenizer: AnyTokenizer, token_index: int) -> str:
return tokenizer.decode(token_index)
def _placeholder_str(self, modality: ModalityStr,
current_count: int) -> Optional[str]:
# TODO: Let user specify how to insert image tokens into prompt
# (similar to chat template)
hf_config = self._model_config.hf_config
model_type = hf_config.model_type
if modality == "image":
if model_type == "phi3_v":
# Workaround since this token is not defined in the tokenizer
return f"<|image_{current_count}|>"
if model_type == "minicpmv":
return "(./)"
if model_type in ("blip-2", "chatglm", "fuyu", "paligemma",
"pixtral"):
# These models do not use image tokens in the prompt
return None
if model_type == "qwen":
return f"Picture {current_count}: "
if model_type.startswith("llava"):
return self._cached_token_str(self._tokenizer,
hf_config.image_token_index)
if model_type in ("chameleon", "internvl_chat"):
return ""
if model_type == "qwen2_vl":
return "<|vision_start|><|image_pad|><|vision_end|>"
raise TypeError(f"Unknown model type: {model_type}")
elif modality == "audio":
if model_type == "ultravox":
return "<|reserved_special_token_0|>"
raise TypeError(f"Unknown model type: {model_type}")
elif modality == "video":
if model_type == "qwen2_vl":
return "<|vision_start|><|video_pad|><|vision_end|>"
raise TypeError(f"Unknown model type: {model_type}")
else:
raise TypeError(f"Unknown modality: {modality}")
@staticmethod
def _combine(items: List[MultiModalDataDict]) -> MultiModalDataDict:
mm_lists: Mapping[str, List[object]] = defaultdict(list)
# Merge all the multi-modal items
for single_mm_data in items:
for mm_key, mm_item in single_mm_data.items():
if isinstance(mm_item, list):
mm_lists[mm_key].extend(mm_item)
else:
mm_lists[mm_key].append(mm_item)
# Unpack any single item lists for models that don't expect multiple.
return {
mm_key: mm_list[0] if len(mm_list) == 1 else mm_list
for mm_key, mm_list in mm_lists.items()
}
def add(self, modality: ModalityStr, item: _T) -> Optional[str]:
"""
Add a multi-modal item to the current prompt and returns the
placeholder string to use, if any.
"""
allowed_count = self._allowed_items.get(modality, 1)
current_count = self._consumed_items.get(modality, 0) + 1
if current_count > allowed_count:
raise ValueError(
f"At most {allowed_count} {modality}(s) may be provided in "
"one request.")
self._consumed_items[modality] = current_count
self._items.append(item)
return self._placeholder_str(modality, current_count)
@abstractmethod
def create_parser(self) -> "BaseMultiModalContentParser":
raise NotImplementedError
class MultiModalItemTracker(BaseMultiModalItemTracker[MultiModalDataDict]):
def all_mm_data(self) -> Optional[MultiModalDataDict]:
return self._combine(self._items) if self._items else None
def create_parser(self) -> "BaseMultiModalContentParser":
return MultiModalContentParser(self)
class AsyncMultiModalItemTracker(
BaseMultiModalItemTracker[Awaitable[MultiModalDataDict]]):
async def all_mm_data(self) -> Optional[MultiModalDataDict]:
if self._items:
items = await asyncio.gather(*self._items)
return self._combine(items)
return None
def create_parser(self) -> "BaseMultiModalContentParser":
return AsyncMultiModalContentParser(self)
class BaseMultiModalContentParser(ABC):
def __init__(self) -> None:
super().__init__()
# multimodal placeholder_string : count
self._placeholder_counts: Dict[str, int] = defaultdict(lambda: 0)
def _add_placeholder(self, placeholder: Optional[str]):
if placeholder:
self._placeholder_counts[placeholder] += 1
def mm_placeholder_counts(self) -> Dict[str, int]:
return dict(self._placeholder_counts)
@abstractmethod
def parse_image(self, image_url: str) -> None:
raise NotImplementedError
@abstractmethod
def parse_audio(self, audio_url: str) -> None:
raise NotImplementedError
class MultiModalContentParser(BaseMultiModalContentParser):
def __init__(self, tracker: MultiModalItemTracker) -> None:
super().__init__()
self._tracker = tracker
def parse_image(self, image_url: str) -> None:
image = get_and_parse_image(image_url)
placeholder = self._tracker.add("image", image)
self._add_placeholder(placeholder)
def parse_audio(self, audio_url: str) -> None:
audio = get_and_parse_audio(audio_url)
placeholder = self._tracker.add("audio", audio)
self._add_placeholder(placeholder)
class AsyncMultiModalContentParser(BaseMultiModalContentParser):
def __init__(self, tracker: AsyncMultiModalItemTracker) -> None:
super().__init__()
self._tracker = tracker
def parse_image(self, image_url: str) -> None:
image_coro = async_get_and_parse_image(image_url)
placeholder = self._tracker.add("image", image_coro)
self._add_placeholder(placeholder)
def parse_audio(self, audio_url: str) -> None:
audio_coro = async_get_and_parse_audio(audio_url)
placeholder = self._tracker.add("audio", audio_coro)
self._add_placeholder(placeholder)
def load_chat_template(
chat_template: Optional[Union[Path, str]]) -> Optional[str]:
if chat_template is None:
return None
try:
with open(chat_template, "r") as f:
resolved_chat_template = f.read()
except OSError as e:
if isinstance(chat_template, Path):
raise
JINJA_CHARS = "{}\n"
if not any(c in chat_template for c in JINJA_CHARS):
msg = (f"The supplied chat template ({chat_template}) "
f"looks like a file path, but it failed to be "
f"opened. Reason: {e}")
raise ValueError(msg) from e
# If opening a file fails, set chat template to be args to
# ensure we decode so our escape are interpreted correctly
resolved_chat_template = codecs.decode(chat_template, "unicode_escape")
logger.info("Using supplied chat template:\n%s", resolved_chat_template)
return resolved_chat_template
# TODO: Let user specify how to insert multimodal tokens into prompt
# (similar to chat template)
def _get_full_multimodal_text_prompt(placeholder_counts: Dict[str, int],
text_prompt: str) -> str:
"""Combine multimodal prompts for a multimodal language model."""
# Look through the text prompt to check for missing placeholders
missing_placeholders: List[str] = []
for placeholder in placeholder_counts:
# For any existing placeholder in the text prompt, we leave it as is
placeholder_counts[placeholder] -= text_prompt.count(placeholder)
if placeholder_counts[placeholder] < 0:
raise ValueError(
f"Found more '{placeholder}' placeholders in input prompt than "
"actual multimodal data items.")
missing_placeholders.extend([placeholder] *
placeholder_counts[placeholder])
# NOTE: For now we always add missing placeholders at the front of
# the prompt. This may change to be customizable in the future.
return "\n".join(missing_placeholders + [text_prompt])
# No need to validate using Pydantic again
_TextParser = partial(cast, ChatCompletionContentPartTextParam)
_ImageParser = partial(cast, ChatCompletionContentPartImageParam)
_AudioParser = partial(cast, ChatCompletionContentPartAudioParam)
_RefusalParser = partial(cast, ChatCompletionContentPartRefusalParam)
def _parse_chat_message_content_parts(
role: str,
parts: Iterable[ChatCompletionContentPartParam],
mm_tracker: BaseMultiModalItemTracker,
) -> List[ConversationMessage]:
texts: List[str] = []
mm_parser = mm_tracker.create_parser()
for part in parts:
part_type = part["type"]
if part_type == "text":
text = _TextParser(part)["text"]
texts.append(text)
elif part_type == "image_url":
image_url = _ImageParser(part)["image_url"]
if image_url.get("detail", "auto") != "auto":
logger.warning(
"'image_url.detail' is currently not supported and "
"will be ignored.")
mm_parser.parse_image(image_url["url"])
elif part_type == "audio_url":
audio_url = _AudioParser(part)["audio_url"]
mm_parser.parse_audio(audio_url["url"])
elif part_type == "refusal":
text = _RefusalParser(part)["refusal"]
texts.append(text)
else:
raise NotImplementedError(f"Unknown part type: {part_type}")
text_prompt = "\n".join(texts)
mm_placeholder_counts = mm_parser.mm_placeholder_counts()
if mm_placeholder_counts:
text_prompt = _get_full_multimodal_text_prompt(mm_placeholder_counts,
text_prompt)
return [ConversationMessage(role=role, content=text_prompt)]
# No need to validate using Pydantic again
_AssistantParser = partial(cast, ChatCompletionAssistantMessageParam)
_ToolParser = partial(cast, ChatCompletionToolMessageParam)
def _parse_chat_message_content(
message: ChatCompletionMessageParam,
mm_tracker: BaseMultiModalItemTracker,
) -> List[ConversationMessage]:
role = message["role"]
content = message.get("content")
if content is None:
content = []
elif isinstance(content, str):
content = [
ChatCompletionContentPartTextParam(type="text", text=content)
]
result = _parse_chat_message_content_parts(
role,
content, # type: ignore
mm_tracker,
)
for result_msg in result:
if role == 'assistant':
parsed_msg = _AssistantParser(message)
if "tool_calls" in parsed_msg:
result_msg["tool_calls"] = list(parsed_msg["tool_calls"])
elif role == "tool":
parsed_msg = _ToolParser(message)
if "tool_call_id" in parsed_msg:
result_msg["tool_call_id"] = parsed_msg["tool_call_id"]
if "name" in message and isinstance(message["name"], str):
result_msg["name"] = message["name"]
return result
def _postprocess_messages(messages: List[ConversationMessage]) -> None:
# per the Transformers docs & maintainers, tool call arguments in
# assistant-role messages with tool_calls need to be dicts not JSON str -
# this is how tool-use chat templates will expect them moving forwards
# so, for messages that have tool_calls, parse the string (which we get
# from openAI format) to dict
for message in messages:
if (message["role"] == "assistant" and "tool_calls" in message
and isinstance(message["tool_calls"], list)):
for item in message["tool_calls"]:
item["function"]["arguments"] = json.loads(
item["function"]["arguments"])
def parse_chat_messages(
messages: List[ChatCompletionMessageParam],
model_config: ModelConfig,
tokenizer: AnyTokenizer,
) -> Tuple[List[ConversationMessage], Optional[MultiModalDataDict]]:
conversation: List[ConversationMessage] = []
mm_tracker = MultiModalItemTracker(model_config, tokenizer)
for msg in messages:
sub_messages = _parse_chat_message_content(msg, mm_tracker)
conversation.extend(sub_messages)
_postprocess_messages(conversation)
return conversation, mm_tracker.all_mm_data()
def parse_chat_messages_futures(
messages: List[ChatCompletionMessageParam],
model_config: ModelConfig,
tokenizer: AnyTokenizer,
) -> Tuple[List[ConversationMessage], Awaitable[Optional[MultiModalDataDict]]]:
conversation: List[ConversationMessage] = []
mm_tracker = AsyncMultiModalItemTracker(model_config, tokenizer)
for msg in messages:
sub_messages = _parse_chat_message_content(msg, mm_tracker)
conversation.extend(sub_messages)
_postprocess_messages(conversation)
return conversation, mm_tracker.all_mm_data()
def apply_hf_chat_template(
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
conversation: List[ConversationMessage],
chat_template: Optional[str],
*,
tokenize: bool = False, # Different from HF's default
**kwargs: Any,
) -> str:
if chat_template is None and tokenizer.chat_template is None:
raise ValueError(
"As of transformers v4.44, default chat template is no longer "
"allowed, so you must provide a chat template if the tokenizer "
"does not define one.")
return tokenizer.apply_chat_template(
conversation=conversation, # type: ignore[arg-type]
chat_template=chat_template,
tokenize=tokenize,
**kwargs,
)
def apply_mistral_chat_template(
tokenizer: MistralTokenizer,
messages: List[ChatCompletionMessageParam],
chat_template: Optional[str] = None,
**kwargs: Any,
) -> List[int]:
if chat_template is not None:
logger.warning(
"'chat_template' cannot be overridden for mistral tokenizer.")
return tokenizer.apply_chat_template(
messages=messages,
**kwargs,
)