"""Tests whether FP8 computation is enabled correctly. Run `pytest tests/quantization/test_fp8.py --forked`. """ import pytest import torch from aphrodite import _custom_ops as ops from aphrodite.platforms import current_platform from aphrodite.quantization.fp8 import Fp8KVCacheMethod, Fp8LinearMethod from tests.quantization.utils import is_quant_method_supported MODELS = [ "neuralmagic/Meta-Llama-3-8B-Instruct-FP8-KV", "nm-testing/Phi-3-mini-128k-instruct-FP8", "nm-testing/Qwen2-0.5B-Instruct-FP8-SkipQKV", ] @pytest.mark.skipif(not is_quant_method_supported("fp8"), reason="FP8 is not supported on this GPU type.") @pytest.mark.parametrize("model_id", MODELS) @pytest.mark.parametrize("force_marlin", [False, True]) def test_model_load_and_run(aphrodite_runner, model_id: str, force_marlin: bool, monkeypatch) -> None: if force_marlin: monkeypatch.setenv("APHRODITE_TEST_FORCE_FP8_MARLIN", "1") with aphrodite_runner(model_id) as llm: # note: this does not test accuracy, just that we can run through # see lm-eval tests for accuracy outputs = llm.generate_greedy(prompts=["Hello my name is"], max_tokens=10) print(outputs[0][1]) KV_CACHE_MODELS = [ # Deprecated AutoFP8 format using .kv_scale "neuralmagic/Meta-Llama-3-8B-Instruct-FP8-KV", # AutoFP8 format using separate .k_scale and .v_scale "nm-testing/Qwen2-1.5B-Instruct-FP8-K-V", ] @pytest.mark.skipif(not is_quant_method_supported("fp8"), reason="FP8 is not supported on this GPU type.") @pytest.mark.parametrize("model_id", KV_CACHE_MODELS) def test_kv_cache_model_load_and_run(aphrodite_runner, model_id: str): with aphrodite_runner(model_id, kv_cache_dtype="fp8") as llm: model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501 attn = model.model.layers[0].self_attn.attn assert isinstance(attn.quant_method, Fp8KVCacheMethod) # NOTE: it is valid for scales to be 1.0 (default value), but we know # these checkpoints have scales < 1.0 assert 0.0 < attn._k_scale < 1.0 assert 0.0 < attn._v_scale < 1.0 # note: this does not test accuracy, just that we can run through # see lm-eval tests for accuracy outputs = llm.generate_greedy(prompts=["Hello my name is"], max_tokens=10) print(outputs[0][1]) @pytest.mark.skipif(not is_quant_method_supported("fp8"), reason="FP8 is not supported on this GPU type.") @pytest.mark.parametrize("kv_cache_dtype", ["auto", "fp8"]) @pytest.mark.parametrize("force_marlin", [False, True]) def test_load_fp16_model(aphrodite_runner, kv_cache_dtype: str, force_marlin: bool, monkeypatch) -> None: if force_marlin: monkeypatch.setenv("APHRODITE_TEST_FORCE_FP8_MARLIN", "1") with aphrodite_runner("facebook/opt-125m", quantization="fp8", kv_cache_dtype=kv_cache_dtype) as llm: model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501 fc1 = model.model.decoder.layers[0].fc1 assert isinstance(fc1.quant_method, Fp8LinearMethod) if kv_cache_dtype == "fp8": attn = model.model.decoder.layers[0].self_attn.attn assert isinstance(attn.quant_method, Fp8KVCacheMethod) assert attn._k_scale == 1.0 assert attn._v_scale == 1.0 capability = current_platform.get_device_capability() capability = capability[0] * 10 + capability[1] if capability >= 89 and not force_marlin: # For GPUs with hardware support, we keep weights in fp8 assert fc1.weight.dtype == torch.float8_e4m3fn else: # For GPUs without hardware support, we pack the fp8 weights # for weight-only quantization using Marlin kernels assert fc1.weight.dtype == torch.int32 @pytest.mark.skipif(not is_quant_method_supported("fp8"), reason="FP8 is not supported on this GPU type.") @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16]) def test_scaled_fp8_quant(dtype) -> None: def quantize_ref(tensor, inv_scale): # The reference implementation that fully aligns to # the kernel being tested. finfo = torch.finfo(torch.float8_e4m3fn) scale = inv_scale.reciprocal() qweight = (tensor.to(torch.float32) * scale).clamp(min=finfo.min, max=finfo.max) qweight = qweight.to(torch.float8_e4m3fn) return qweight def per_tensor_dequantize(tensor, inv_scale, dtype): fake_qweight = tensor.to(dtype) dq_weight = fake_qweight * inv_scale return dq_weight # Note that we use a shape % 4 != 0 to cover edge cases, # because scaled_fp8_quant is vectorized by 4. x = (torch.randn(size=(11, 11), device="cuda") * 13).to(dtype) # Dynamic quantization ref_y, inv_scale = ops.scaled_fp8_quant(x, None) ref_y = per_tensor_dequantize(ref_y, inv_scale, dtype) # Reference dynamic quantizaton y = quantize_ref(x, inv_scale) torch.testing.assert_close(ref_y, per_tensor_dequantize(y, inv_scale, dtype)) # Static quantization y, _ = ops.scaled_fp8_quant(x, inv_scale) torch.testing.assert_close(ref_y, per_tensor_dequantize(y, inv_scale, dtype)) # Padding y, _ = ops.scaled_fp8_quant(x, inv_scale, num_token_padding=17) assert y.shape[0] == 17 torch.testing.assert_close( ref_y, per_tensor_dequantize(torch.narrow(y, 0, 0, x.shape[0]), inv_scale, dtype))