# Test the LLMEngine with multi-step-decoding from typing import Optional import pytest from ..models.utils import check_logprobs_close, check_outputs_equal MODELS = [ "JackFram/llama-160m", ] NUM_SCHEDULER_STEPS = [8] # Multi-step decoding steps NUM_PROMPTS = [10] @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("tp_size", [1]) @pytest.mark.parametrize("max_tokens", [5]) @pytest.mark.parametrize("enforce_eager", [True]) @pytest.mark.parametrize("num_scheduler_steps", NUM_SCHEDULER_STEPS) @pytest.mark.parametrize("num_prompts", NUM_PROMPTS) @pytest.mark.parametrize("num_logprobs", [None, 5]) def test_multi_step_llm( hf_runner, aphrodite_runner, example_prompts, model: str, dtype: str, tp_size: int, max_tokens: int, enforce_eager: int, num_scheduler_steps: int, num_prompts: int, num_logprobs: Optional[int], ) -> None: """Test Aphrodite engine with multi-step scheduling via sync LLM Engine. Set up a HuggingFace (HF) transformers model as a ground-truth reference. Prompt them with the same example prompts. Validate: * Generated tokens match * Generated logprobs are all very close Args: hf_runner: HF transformers model runner fixture aphrodite_runner: Aphrodite model runner fixture example_prompts: test fixture providing example prompts model: model under test (same for single- and multi-step engines) dtype: tensor datatype for engine to utilize tp_size: degree of tensor-parallelism max_tokens: the maximum number of tokens to generate enforce_eager num_scheduler_steps: for multi-step scheduling, GPU-side steps per GPU -> CPU output transfer num_prompts: number of example prompts under test num_logprobs: corresponds to the `logprobs` argument to the OpenAI completions endpoint; `None` -> no logprobs """ prompts = example_prompts if len(prompts) < num_prompts: prompts = prompts * ((num_prompts // len(prompts)) + 1) prompts = prompts[:num_prompts] assert len(prompts) == num_prompts with aphrodite_runner( model, dtype=dtype, enforce_eager=enforce_eager, gpu_memory_utilization=0.7, tensor_parallel_size=tp_size, use_v2_block_manager=True, num_scheduler_steps=num_scheduler_steps, ) as aphrodite_model: aphrodite_outputs = (aphrodite_model.generate_greedy( prompts, max_tokens) if num_logprobs is None else aphrodite_model.generate_greedy_logprobs( prompts, max_tokens, num_logprobs)) with hf_runner(model, dtype=dtype) as hf_model: hf_outputs = (hf_model.generate_greedy(prompts, max_tokens) if num_logprobs is None else hf_model.generate_greedy_logprobs_limit( prompts, max_tokens, num_logprobs)) if num_logprobs is None: check_outputs_equal( outputs_0_lst=hf_outputs, outputs_1_lst=aphrodite_outputs, name_0="hf", name_1="aphrodite", ) else: check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=aphrodite_outputs, name_0="hf", name_1="aphrodite", ) @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) @pytest.mark.parametrize("tp_size", [1]) @pytest.mark.parametrize("max_tokens", [5]) @pytest.mark.parametrize("enforce_eager", [True]) @pytest.mark.parametrize("num_scheduler_steps", NUM_SCHEDULER_STEPS) @pytest.mark.parametrize("num_prompts", NUM_PROMPTS) @pytest.mark.parametrize("num_logprobs,num_prompt_logprobs", [(5, 5)]) def test_multi_step_llm_w_prompt_logprobs( aphrodite_runner, example_prompts, model: str, dtype: str, tp_size: int, max_tokens: int, enforce_eager: int, num_scheduler_steps: int, num_prompts: int, num_logprobs: Optional[int], num_prompt_logprobs: Optional[int], ) -> None: """Test prompt logprobs with multi-step scheduling via sync LLM Engine. Set up a Aphrodite engine instance w/ single-step scheduling as a ground-truth reference. Prompt them with the same example prompts. Validate: * All generated logprobs are all very close Args: hf_runner: HF transformers model runner fixture aphrodite_runner: Aphrodite model runner fixture example_prompts: test fixture providing example prompts model: model under test (same for single- and multi-step engines) dtype: tensor datatype for engine to utilize tp_size: degree of tensor-parallelism max_tokens: the maximum number of tokens to generate enforce_eager num_scheduler_steps: for multi-step scheduling, GPU-side steps per GPU -> CPU output transfer num_prompts: number of example prompts under test num_logprobs: corresponds to the `logprobs` argument to the OpenAI completions endpoint; `None` -> no logprobs num_prompt_logprobs: number of logprobs to return for each prompt token; note that this argument is not supported by the OpenAI completions endpoint. """ prompts = example_prompts if len(prompts) < num_prompts: prompts = prompts * ((num_prompts // len(prompts)) + 1) prompts = prompts[:num_prompts] assert len(prompts) == num_prompts with aphrodite_runner( model, dtype=dtype, enforce_eager=enforce_eager, gpu_memory_utilization=0.7, tensor_parallel_size=tp_size, use_v2_block_manager=True, num_scheduler_steps=num_scheduler_steps, ) as aphrodite_model: aphrodite_outputs = aphrodite_model.generate_greedy_logprobs( prompts, max_tokens, num_logprobs, num_prompt_logprobs=num_prompt_logprobs) with aphrodite_runner( model, dtype=dtype, enforce_eager=enforce_eager, gpu_memory_utilization=0.7, tensor_parallel_size=tp_size, ) as aphrodite_model: single_step_aphrodite_outputs = ( aphrodite_model.generate_greedy_logprobs( prompts, max_tokens, num_logprobs, num_prompt_logprobs=num_prompt_logprobs)) check_logprobs_close( outputs_0_lst=single_step_aphrodite_outputs, outputs_1_lst=aphrodite_outputs, name_0="hf", name_1="aphrodite", )