from typing import List import pytest import ray import aphrodite from aphrodite.lora.request import LoRARequest from .conftest import cleanup MODEL_PATH = "meta-llama/Llama-2-7b-hf" def do_sample(llm: aphrodite.LLM, lora_path: str, lora_id: int) -> List[str]: prompts = [ "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]", # noqa: E501 "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? [/user] [assistant]", # noqa: E501 "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_95 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a low tone mora with a gloss of /˩okiru/ [òkìɽɯ́]? [/user] [assistant]", # noqa: E501 "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. [/user] [assistant]", # noqa: E501 "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_60 (pick INTEGER, former_wnba_team VARCHAR)\n\n question: What pick was a player that previously played for the Minnesota Lynx? [/user] [assistant]", # noqa: E501 "[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]" # noqa: E501 ] sampling_params = aphrodite.SamplingParams(temperature=0, max_tokens=256, stop=["[/assistant]"]) outputs = llm.generate( prompts, sampling_params, lora_request=LoRARequest(str(lora_id), lora_id, lora_path) if lora_id else None) # Print the outputs. generated_texts: List[str] = [] for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text generated_texts.append(generated_text) print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") return generated_texts @pytest.mark.parametrize("tp_size", [1, 2, 4]) def test_llama_lora(sql_lora_files, tp_size, num_gpus_available): if num_gpus_available < tp_size: pytest.skip(f"Not enough GPUs for tensor parallelism {tp_size}") llm = aphrodite.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16, max_loras=4, tensor_parallel_size=tp_size) expected_no_lora_output = [ "\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_75 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_76 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_77 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_78 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user]", # noqa: E501 " Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_11 (nationality VARCHAR, elector VARCHAR)\n\n question: When Anchero Pantaleone was the elector what is under nationality? ", # noqa: E501 "\n\n answer: 1\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_96 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a high tone mora with a gloss of /˧kot/ [kòt]? [/user] [assistant]\n\n answer: 2\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_97 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one mora for a high tone mora with a gloss of /˧kot/ [kòt]? [/user] [assistant]\n\n answer: 2\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_98 (one_mora VARCHAR, gloss VARCHAR, accented_mora VARCHAR)\n\n question: What is the one m", # noqa: E501 " Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. ", # noqa: E501 " Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_60 (pick INTEGER, former_wnba_team VARCHAR)\n\n question: What pick was a player that previously played for the Minnesota Lynx? ", # noqa: E501 "\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]\n\n [user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE", # noqa: E501 ] expected_lora_output = [ " SELECT icao FROM table_name_74 WHERE airport = 'lilongwe international airport' ", # noqa: E501 " SELECT nationality FROM table_name_11 WHERE elector = 'anchero pantaleone' ", # noqa: E501 " SELECT one_mora FROM table_name_95 WHERE gloss = 'low tone mora with a gloss of /˩okiru/' [òkìɽɯ́] AND accented_mora = 'low tone mora with a gloss of /˩okiru/' [òkìɽɯ́] ", # noqa: E501 " SELECT sex FROM people WHERE people_id IN (SELECT people_id FROM candidate GROUP BY sex ORDER BY COUNT(people_id) DESC LIMIT 1) ", # noqa: E501 " SELECT pick FROM table_name_60 WHERE former_wnba_team = 'Minnesota Lynx' ", # noqa: E501 " SELECT womens_doubles FROM table_28138035_4 WHERE mens_singles = 'Werner Schlager' " # noqa: E501 ] print("lora adapter created") assert do_sample(llm, sql_lora_files, lora_id=0) == expected_no_lora_output print("lora 1") assert do_sample(llm, sql_lora_files, lora_id=1) == expected_lora_output print("no lora") assert do_sample(llm, sql_lora_files, lora_id=0) == expected_no_lora_output print("lora 2") assert do_sample(llm, sql_lora_files, lora_id=2) == expected_lora_output print("removing lora") def test_llama_tensor_parallel_equality(sql_lora_files, num_gpus_available): if num_gpus_available < 4: pytest.skip("Not enough GPUs for tensor parallelism 4") llm_tp1 = aphrodite.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16, max_loras=4, tensor_parallel_size=1) output_tp1 = do_sample(llm_tp1, sql_lora_files, lora_id=1) del llm_tp1 cleanup() llm_tp2 = aphrodite.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16, max_loras=4, tensor_parallel_size=2) output_tp2 = do_sample(llm_tp2, sql_lora_files, lora_id=1) del llm_tp2 cleanup() assert output_tp1 == output_tp2 llm_tp4 = aphrodite.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16, max_loras=4, tensor_parallel_size=4) output_tp4 = do_sample(llm_tp4, sql_lora_files, lora_id=1) del llm_tp4 cleanup() assert output_tp1 == output_tp4 def test_llama_lora_warmup(sql_lora_files): """Test that the LLM initialization works with a warmup LORA path and is more conservative""" @ray.remote(num_gpus=1) def get_num_gpu_blocks_lora(): llm = aphrodite.LLM(MODEL_PATH, enable_lora=True, max_num_seqs=16) num_gpu_blocks_lora_warmup = llm.llm_engine.cache_config.num_gpu_blocks return num_gpu_blocks_lora_warmup @ray.remote(num_gpus=1) def get_num_gpu_blocks_no_lora(): llm = aphrodite.LLM(MODEL_PATH, max_num_seqs=16) num_gpu_blocks_no_lora_warmup = ( llm.llm_engine.cache_config.num_gpu_blocks) return num_gpu_blocks_no_lora_warmup num_gpu_blocks_lora_warmup = ray.get(get_num_gpu_blocks_lora.remote()) num_gpu_blocks_no_lora_warmup = ray.get( get_num_gpu_blocks_no_lora.remote()) assert num_gpu_blocks_lora_warmup < num_gpu_blocks_no_lora_warmup, ( "The warmup with lora should be more " "conservative than without lora, therefore the number of " "memory blocks for the KV cache should be " "less when using lora than when not using lora")