"""Tests for the marlin kernel. Run `pytest tests/kernels/marlin/test_marlin_gemm.py`. """ import pytest import torch from aphrodite import _custom_ops as ops from aphrodite.quantization.gptq_marlin_24 import ( GPTQ_MARLIN_24_MAX_PARALLEL, GPTQ_MARLIN_24_MIN_THREAD_N, GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES, GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES) from aphrodite.quantization.qqq import (MARLIN_QQQ_MAX_PARALLEL, MARLIN_QQQ_MIN_THREAD_N, MARLIN_QQQ_SUPPORTED_GROUP_SIZES, MARLIN_QQQ_SUPPORTED_NUM_BITS) from aphrodite.quantization.utils.marlin_utils import ( GPTQ_MARLIN_MAX_PARALLEL, GPTQ_MARLIN_MIN_THREAD_N, MARLIN_SUPPORTED_GROUP_SIZES, marlin_make_empty_g_idx, marlin_permute_scales, query_marlin_supported_quant_types) from aphrodite.quantization.utils.marlin_utils_fp8 import pack_fp8_to_int32 from aphrodite.quantization.utils.marlin_utils_test import ( MarlinWorkspace, awq_marlin_quantize, get_weight_perm, marlin_quantize, marlin_weights) from aphrodite.quantization.utils.marlin_utils_test_24 import ( marlin_24_quantize) from aphrodite.quantization.utils.marlin_utils_test_qqq import ( # noqa: E501 marlin_qqq_quantize) from aphrodite.quantization.utils.quant_utils import (awq_pack, gptq_pack, gptq_quantize_weights, quantize_weights, sort_weights) from tests.kernels.utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck from tests.quantization.utils import is_quant_method_supported ACT_ORDER_OPTS = [False, True] K_FULL_OPTS = [False, True] USE_FP32_REDUCE_OPTS = [False, True] MARLIN_K_CHUNKS = [128] MARLIN_N_CHUNKS = [64, 128, 256] MARLIN_24_K_CHUNKS = [128] MARLIN_24_N_CHUNKS = [512] MNK_FACTORS = [ (1, 1, 1), (1, 4, 8), (1, 7, 5), (13, 17, 67), (26, 37, 13), (67, 13, 11), ] DTYPES = [torch.float16, torch.bfloat16] def compute_max_diff(output, output_ref): return torch.mean(torch.abs(output - output_ref)) / torch.mean( torch.abs(output_ref)) def rand_data(shape, dtype=torch.float16): return torch.randn(shape, dtype=dtype, device="cuda") @pytest.mark.skipif(not is_quant_method_supported("gptq_marlin"), reason="Marlin is not supported on this GPU type.") @pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS) @pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS) @pytest.mark.parametrize("quant_type", query_marlin_supported_quant_types(False)) @pytest.mark.parametrize("group_size", MARLIN_SUPPORTED_GROUP_SIZES) @pytest.mark.parametrize("act_order", ACT_ORDER_OPTS) @pytest.mark.parametrize("mnk_factors", MNK_FACTORS) def test_gptq_marlin_repack(k_chunk, n_chunk, quant_type, group_size, act_order, mnk_factors): m_factor, n_factor, k_factor = mnk_factors size_k = k_chunk * k_factor size_n = n_chunk * n_factor # Filter act_order if act_order: if group_size == -1: return if group_size == size_k: return # Normalize group_size if group_size == -1: group_size = size_k assert group_size <= size_k # Create input b_weight = rand_data((size_k, size_n)) # Quantize (and apply act_order if provided) w_ref, q_w, s, g_idx, rand_perm = gptq_quantize_weights( b_weight, quant_type, group_size, act_order) # Pack to GPTQ format q_w_gptq = gptq_pack(q_w, quant_type.size_bits, size_k, size_n) # For act_order, sort the "weights" and "g_idx" so that group ids are # increasing sort_indices = torch.empty(0, dtype=torch.int, device=b_weight.device) if act_order: q_w, g_idx, sort_indices = sort_weights(q_w, g_idx) # Pack to Marlin format weight_perm = get_weight_perm(quant_type.size_bits) marlin_q_w_1 = marlin_weights(q_w, size_k, size_n, quant_type.size_bits, weight_perm) opcheck(torch.ops._C.gptq_marlin_repack, (q_w_gptq, sort_indices, size_k, size_n, quant_type.size_bits)) # Run Marlin repack GPU kernel marlin_q_w_2 = ops.gptq_marlin_repack( q_w_gptq, sort_indices, size_k, size_n, quant_type.size_bits, ) torch.cuda.synchronize() torch.testing.assert_close(marlin_q_w_1, marlin_q_w_2) @pytest.mark.skipif(not is_quant_method_supported("gptq_marlin"), reason="Marlin is not supported on this GPU type.") @pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS) @pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS) @pytest.mark.parametrize("quant_type", query_marlin_supported_quant_types(False)) @pytest.mark.parametrize("group_size", MARLIN_SUPPORTED_GROUP_SIZES) @pytest.mark.parametrize("mnk_factors", MNK_FACTORS) def test_awq_marlin_repack(k_chunk, n_chunk, quant_type, group_size, mnk_factors): m_factor, n_factor, k_factor = mnk_factors size_k = k_chunk * k_factor size_n = n_chunk * n_factor # Normalize group_size if group_size == -1: group_size = size_k assert group_size <= size_k # Create input b_weight = rand_data((size_k, size_n)) # Quantize w_ref, q_w, s, zp = quantize_weights(b_weight, quant_type, group_size, zero_points=True) # Pack to AWQ format q_w_awq = awq_pack(q_w, quant_type.size_bits, size_k, size_n) # Pack to Marlin format weight_perm = get_weight_perm(quant_type.size_bits) marlin_q_w_1 = marlin_weights(q_w, size_k, size_n, quant_type.size_bits, weight_perm) opcheck(torch.ops._C.awq_marlin_repack, (q_w_awq, size_k, size_n, quant_type.size_bits)) # Run Marlin repack GPU kernel marlin_q_w_2 = ops.awq_marlin_repack( q_w_awq, size_k, size_n, quant_type.size_bits, ) torch.cuda.synchronize() torch.testing.assert_close(marlin_q_w_1, marlin_q_w_2) @pytest.mark.skipif(not is_quant_method_supported("gptq_marlin"), reason="Marlin is not supported on this GPU type.") @pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS) @pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS) @pytest.mark.parametrize("quant_type", query_marlin_supported_quant_types(False)) @pytest.mark.parametrize("group_size", MARLIN_SUPPORTED_GROUP_SIZES) @pytest.mark.parametrize("mnk_factors", MNK_FACTORS) @pytest.mark.parametrize("act_order", ACT_ORDER_OPTS) @pytest.mark.parametrize("is_k_full", K_FULL_OPTS) @pytest.mark.parametrize("use_fp32_reduce", USE_FP32_REDUCE_OPTS) def test_gptq_marlin_gemm( k_chunk, n_chunk, quant_type, group_size, mnk_factors, act_order, is_k_full, use_fp32_reduce, ): m_factor, n_factor, k_factor = mnk_factors size_m = m_factor size_k = k_chunk * k_factor size_n = n_chunk * n_factor if act_order: if group_size == -1: return if group_size == size_k: return a_input = rand_data((size_m, size_k)) b_weight = rand_data((size_k, size_n)) w_ref, marlin_q_w, marlin_s, g_idx, sort_indices, _ = marlin_quantize( b_weight, quant_type, group_size, act_order) marlin_zp = marlin_make_empty_g_idx(marlin_s.device) workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL) opcheck( torch.ops._C.gptq_marlin_gemm, (a_input, marlin_q_w, marlin_s, marlin_zp, g_idx, sort_indices, workspace.scratch, quant_type, a_input.shape[0], b_weight.shape[1], a_input.shape[1], is_k_full, False, use_fp32_reduce), test_utils=DEFAULT_OPCHECK_TEST_UTILS) output = ops.gptq_marlin_gemm( a_input, marlin_q_w, marlin_s, marlin_zp, g_idx, sort_indices, workspace.scratch, quant_type, a_input.shape[0], b_weight.shape[1], a_input.shape[1], is_k_full=is_k_full, has_zp=False, use_fp32_reduce=use_fp32_reduce, ) output_ref = torch.matmul(a_input, w_ref) torch.cuda.synchronize() max_diff = compute_max_diff(output, output_ref) assert max_diff < 0.04 @pytest.mark.skipif(not is_quant_method_supported("gptq_marlin"), reason="Marlin is not supported on this GPU type.") @pytest.mark.parametrize("k_chunk", MARLIN_24_K_CHUNKS) @pytest.mark.parametrize("n_chunk", MARLIN_24_N_CHUNKS) @pytest.mark.parametrize("quant_type", GPTQ_MARLIN_24_SUPPORTED_QUANT_TYPES) @pytest.mark.parametrize("group_size", GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES) @pytest.mark.parametrize("mnk_factors", MNK_FACTORS) def test_gptq_marlin_24_gemm(k_chunk, n_chunk, quant_type, group_size, mnk_factors): m_factor, n_factor, k_factor = mnk_factors size_m = m_factor size_k = k_chunk * k_factor size_n = n_chunk * n_factor a_input = rand_data((size_m, size_k)) b_weight = rand_data((size_k, size_n)) (w_24_ref, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s) = marlin_24_quantize(b_weight, quant_type, group_size) workspace_24 = MarlinWorkspace(size_n, GPTQ_MARLIN_24_MIN_THREAD_N, GPTQ_MARLIN_24_MAX_PARALLEL) output_ref = torch.matmul(a_input, w_24_ref) opcheck(torch.ops._C.gptq_marlin_24_gemm, (a_input, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, workspace_24.scratch, quant_type, a_input.shape[0], b_weight.shape[1], a_input.shape[1]), test_utils=DEFAULT_OPCHECK_TEST_UTILS) output = ops.gptq_marlin_24_gemm( a_input, marlin_24_q_w_comp, marlin_24_meta, marlin_24_s, workspace_24.scratch, quant_type, a_input.shape[0], b_weight.shape[1], a_input.shape[1], ) torch.cuda.synchronize() max_diff = compute_max_diff(output, output_ref) assert max_diff < 0.04 @pytest.mark.skipif(not is_quant_method_supported("fp8"), reason="Marlin is not supported on this GPU type.") @pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS) @pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS) @pytest.mark.parametrize("num_bits", [8]) @pytest.mark.parametrize("group_size", [-1]) @pytest.mark.parametrize("mnk_factors", MNK_FACTORS) @pytest.mark.parametrize("dtype", DTYPES) def test_fp8_marlin_gemm( k_chunk, n_chunk, num_bits, group_size, mnk_factors, dtype, ): m_factor, n_factor, k_factor = mnk_factors size_m = m_factor size_k = k_chunk * k_factor size_n = n_chunk * n_factor a_input = rand_data((size_m, size_k), dtype=dtype) b_weight = rand_data((size_k, size_n), dtype=dtype) # WEIGHTS fp8_weight, weight_scale = ops.scaled_fp8_quant(b_weight, scale=None) # Repack weights to gptq format (packed int32 elements) packed_gptq_qweight = pack_fp8_to_int32(fp8_weight) # Repack weights to marlin format marlin_qweight = ops.gptq_marlin_repack( b_q_weight=packed_gptq_qweight, perm=torch.empty(0, dtype=torch.int, device="cuda"), size_k=size_k, size_n=size_n, num_bits=8, ) # WEIGHT SCALES # Currently Marlin doesn't support per-tensor scales, so we # expand it to channelwise scales = weight_scale.repeat(1, size_n).to(a_input.dtype).to("cuda") # Permute scales marlin_scales = marlin_permute_scales(s=scales, size_k=size_k, size_n=size_n, group_size=-1) workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL) opcheck(torch.ops._C.fp8_marlin_gemm, (a_input, marlin_qweight, marlin_scales, workspace.scratch, num_bits, a_input.shape[0], b_weight.shape[1], a_input.shape[1])) output = ops.fp8_marlin_gemm( a=a_input, b_q_weight=marlin_qweight, b_scales=marlin_scales, workspace=workspace.scratch, num_bits=num_bits, size_m=a_input.shape[0], size_n=b_weight.shape[1], size_k=a_input.shape[1], ) output_ref = torch.matmul(a_input, b_weight) torch.cuda.synchronize() max_diff = compute_max_diff(output, output_ref) assert max_diff < 0.04 @pytest.mark.skipif(not is_quant_method_supported("gptq_marlin"), reason="Marlin is not supported on this GPU type.") @pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS) @pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS) @pytest.mark.parametrize("quant_type", query_marlin_supported_quant_types(True)) @pytest.mark.parametrize("group_size", MARLIN_SUPPORTED_GROUP_SIZES) @pytest.mark.parametrize("mnk_factors", MNK_FACTORS) @pytest.mark.parametrize("use_fp32_reduce", USE_FP32_REDUCE_OPTS) def test_awq_marlin_gemm( k_chunk, n_chunk, quant_type, group_size, mnk_factors, use_fp32_reduce, ): m_factor, n_factor, k_factor = mnk_factors size_m = m_factor size_k = k_chunk * k_factor size_n = n_chunk * n_factor a_input = rand_data((size_m, size_k)) b_weight = rand_data((size_k, size_n)) w_ref, marlin_q_w, marlin_s, marlin_zp = awq_marlin_quantize( b_weight, quant_type, group_size) g_idx = torch.empty(0, dtype=torch.int, device=marlin_q_w.device) sort_indices = torch.empty(0, dtype=torch.int, device=marlin_q_w.device) is_k_full = True has_zp = True workspace = MarlinWorkspace(size_n, GPTQ_MARLIN_MIN_THREAD_N, GPTQ_MARLIN_MAX_PARALLEL) output = ops.gptq_marlin_gemm( a_input, marlin_q_w, marlin_s, marlin_zp, g_idx, sort_indices, workspace.scratch, quant_type, a_input.shape[0], b_weight.shape[1], a_input.shape[1], is_k_full=is_k_full, has_zp=has_zp, use_fp32_reduce=use_fp32_reduce, ) output_ref = torch.matmul(a_input, w_ref) torch.cuda.synchronize() max_diff = compute_max_diff(output, output_ref) assert max_diff < 0.04 @pytest.mark.skipif(not is_quant_method_supported("qqq"), reason="Marlin is not supported on this GPU type.") @pytest.mark.parametrize("k_chunk", MARLIN_K_CHUNKS) @pytest.mark.parametrize("n_chunk", MARLIN_N_CHUNKS) @pytest.mark.parametrize("num_bits", MARLIN_QQQ_SUPPORTED_NUM_BITS) @pytest.mark.parametrize("group_size", MARLIN_QQQ_SUPPORTED_GROUP_SIZES) @pytest.mark.parametrize("mnk_factors", MNK_FACTORS) def test_marlin_qqq_gemm( k_chunk, n_chunk, num_bits, group_size, mnk_factors, ): int8_traits = torch.iinfo(torch.int8) m_factor, n_factor, k_factor = mnk_factors size_m = m_factor size_k = k_chunk * k_factor size_n = n_chunk * n_factor a_input = rand_data((size_m, size_k)) b_weight = rand_data((size_k, size_n)) # Quantize activations s_a = a_input.abs().max(dim=-1, keepdim=True)[0].div(int8_traits.max).to( torch.float) q_a = (a_input / s_a).round().clamp(int8_traits.min, int8_traits.max).to(torch.int8) # Quantize weights w_ref, marlin_qqq_q_w, marlin_qqq_s_group, marlin_qqq_s_channel = \ marlin_qqq_quantize(b_weight, num_bits, group_size) workspace = MarlinWorkspace(size_n, MARLIN_QQQ_MIN_THREAD_N, MARLIN_QQQ_MAX_PARALLEL) opcheck(torch.ops._C.marlin_qqq_gemm, (q_a, marlin_qqq_q_w, s_a, marlin_qqq_s_channel, marlin_qqq_s_group, workspace.scratch, a_input.shape[0], b_weight.shape[1], a_input.shape[1])) output = ops.marlin_qqq_gemm( q_a, marlin_qqq_q_w, s_a, marlin_qqq_s_channel, marlin_qqq_s_group, workspace.scratch, a_input.shape[0], b_weight.shape[1], a_input.shape[1], ) output_ref = torch.matmul(q_a.half() * s_a.half(), w_ref) torch.cuda.synchronize() max_diff = compute_max_diff(output, output_ref) assert max_diff < 0.04