import pytest import torch from aphrodite.modeling.layers.layernorm import RMSNorm from tests.kernels.utils import opcheck DTYPES = [torch.half, torch.bfloat16, torch.float] NUM_TOKENS = [7, 83, 4096] # Arbitrary values for testing HIDDEN_SIZES = [768, 769, 770, 771, 5120, 5124, 5125, 5126, 8192, 8199] # Arbitrary values for testing ADD_RESIDUAL = [False, True] SEEDS = [0] CUDA_DEVICES = [ f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2) ] @pytest.mark.parametrize("num_tokens", NUM_TOKENS) @pytest.mark.parametrize("hidden_size", HIDDEN_SIZES) @pytest.mark.parametrize("add_residual", ADD_RESIDUAL) @pytest.mark.parametrize("dtype", DTYPES) @pytest.mark.parametrize("seed", SEEDS) @pytest.mark.parametrize("device", CUDA_DEVICES) @torch.inference_mode() def test_rms_norm( num_tokens: int, hidden_size: int, add_residual: bool, dtype: torch.dtype, seed: int, device: str, ) -> None: torch.random.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.set_default_device(device) layer = RMSNorm(hidden_size).to(dtype=dtype) layer.weight.data.normal_(mean=1.0, std=0.1) scale = 1 / (2 * hidden_size) x = torch.randn(num_tokens, hidden_size, dtype=dtype) x *= scale residual = torch.randn_like(x) * scale if add_residual else None # NOTE: The reference implementation should be executed first # because the custom kernel is in-place. ref_out = layer.forward_native(x, residual) out = layer(x, residual) # NOTE: LayerNorm operators (including RMS) typically have larger # numerical errors than other operators because they involve reductions. # Therefore, we use a larger tolerance. if add_residual: torch.testing.assert_close(out[0], ref_out[0], atol=1e-2, rtol=1e-2) torch.testing.assert_close(out[1], ref_out[1], atol=1e-2, rtol=1e-2) else: torch.testing.assert_close(out, ref_out, atol=1e-2, rtol=1e-2) if residual is not None: opcheck(torch.ops._C.fused_add_rms_norm, (x, residual, layer.weight.data, layer.variance_epsilon)) else: opcheck(torch.ops._C.rms_norm, (out, x, layer.weight.data, layer.variance_epsilon))