#include #include #include #include #include "cuda_compat.h" #include "dispatch_utils.h" namespace aphrodite { // Activation and gating kernel template. template __global__ void act_and_mul_kernel( scalar_t* __restrict__ out, // [..., d] const scalar_t* __restrict__ input, // [..., 2, d] const int d) { const int64_t token_idx = blockIdx.x; for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) { const scalar_t x = APHRODITE_LDG(&input[token_idx * 2 * d + idx]); const scalar_t y = APHRODITE_LDG(&input[token_idx * 2 * d + d + idx]); out[token_idx * d + idx] = ACT_FN(x) * y; } } template __device__ __forceinline__ T silu_kernel(const T& x) { // x * sigmoid(x) return (T)(((float)x) / (1.0f + expf((float)-x))); } template __device__ __forceinline__ T gelu_kernel(const T& x) { // Equivalent to PyTorch GELU with 'none' approximation. // Refer to: // https://github.com/pytorch/pytorch/blob/8ac9b20d4b090c213799e81acf48a55ea8d437d6/aten/src/ATen/native/cuda/ActivationGeluKernel.cu#L38 const float f = (float)x; constexpr float ALPHA = M_SQRT1_2; return (T)(f * 0.5f * (1.0f + ::erf(f * ALPHA))); } template __device__ __forceinline__ T gelu_tanh_kernel(const T& x) { // Equivalent to PyTorch GELU with `tanh` approximation const float f = (float)x; constexpr float BETA = M_SQRT2 * M_2_SQRTPI * 0.5f; constexpr float KAPPA = 0.044715; float x_cube = f * f * f; float inner = BETA * (f + KAPPA * x_cube); return (T)(0.5f * f * (1.0f + ::tanhf(inner))); } } // namespace aphrodite // Launch activation and gating kernel. #define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \ int d = input.size(-1) / 2; \ int64_t num_tokens = input.numel() / input.size(-1); \ dim3 grid(num_tokens); \ dim3 block(std::min(d, 1024)); \ const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \ const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \ APHRODITE_DISPATCH_FLOATING_TYPES( \ input.scalar_type(), "act_and_mul_kernel", [&] { \ aphrodite::act_and_mul_kernel> \ <<>>(out.data_ptr(), \ input.data_ptr(), d); \ }); void silu_and_mul(torch::Tensor& out, // [..., d] torch::Tensor& input) // [..., 2 * d] { LAUNCH_ACTIVATION_GATE_KERNEL(aphrodite::silu_kernel); } void gelu_and_mul(torch::Tensor& out, // [..., d] torch::Tensor& input) // [..., 2 * d] { LAUNCH_ACTIVATION_GATE_KERNEL(aphrodite::gelu_kernel); } void gelu_tanh_and_mul(torch::Tensor& out, // [..., d] torch::Tensor& input) // [..., 2 * d] { LAUNCH_ACTIVATION_GATE_KERNEL(aphrodite::gelu_tanh_kernel); } namespace aphrodite { // Element-wise activation kernel template. template __global__ void activation_kernel( scalar_t* __restrict__ out, // [..., d] const scalar_t* __restrict__ input, // [..., d] const int d) { const int64_t token_idx = blockIdx.x; for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) { const scalar_t x = APHRODITE_LDG(&input[token_idx * d + idx]); out[token_idx * d + idx] = ACT_FN(x); } } } // namespace aphrodite // Launch element-wise activation kernel. #define LAUNCH_ACTIVATION_KERNEL(KERNEL) \ int d = input.size(-1); \ int64_t num_tokens = input.numel() / d; \ dim3 grid(num_tokens); \ dim3 block(std::min(d, 1024)); \ const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \ const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \ APHRODITE_DISPATCH_FLOATING_TYPES( \ input.scalar_type(), "activation_kernel", [&] { \ aphrodite::activation_kernel> \ <<>>(out.data_ptr(), \ input.data_ptr(), d); \ }); namespace aphrodite { template __device__ __forceinline__ T gelu_new_kernel(const T& x) { const float x3 = (float)(x * x * x); const T t = (T)tanhf((T)(0.79788456f * (float)(x + (T)(0.044715f * x3)))); return ((T)0.5) * x * (((T)1.0) + t); } template __device__ __forceinline__ T gelu_fast_kernel(const T& x) { const float f = (float)x; const T t = (T)tanhf(((T)(f * 0.79788456f)) * (((T)1.0) + (T)(0.044715f * f) * x)); return ((T)0.5) * x * (((T)1.0) + t); } template __device__ __forceinline__ T gelu_quick_kernel(const T& x) { // x * sigmoid(1.702 * x) return (T)(((float)x) / (1.0f + expf(-1.702f * (float)x))); } } // namespace aphrodite void gelu_new(torch::Tensor& out, // [..., d] torch::Tensor& input) // [..., d] { LAUNCH_ACTIVATION_KERNEL(aphrodite::gelu_new_kernel); } void gelu_fast(torch::Tensor& out, // [..., d] torch::Tensor& input) // [..., d] { LAUNCH_ACTIVATION_KERNEL(aphrodite::gelu_fast_kernel); } void gelu_quick(torch::Tensor& out, // [..., d] torch::Tensor& input) // [..., d] { LAUNCH_ACTIVATION_KERNEL(aphrodite::gelu_quick_kernel); }