""" This example shows how to use vLLM for running offline inference with the correct prompt format on vision language models. For most models, the prompt format should follow corresponding examples on HuggingFace model repository. """ from transformers import AutoTokenizer from aphrodite import LLM, SamplingParams from aphrodite.assets.audio import AudioAsset from aphrodite.common.utils import FlexibleArgumentParser # Input audio and question # audio_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), # "mary_had_lamb.ogg") # audio_and_sample_rate = librosa.load(audio_path, sr=None) audio_assets = [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")] question_per_audio_count = [ "What is recited in the audio?", "What sport and what nursery rhyme are referenced?" ] # Ultravox 0.3 def run_ultravox(question, audio_count): model_name = "fixie-ai/ultravox-v0_3" tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [{ 'role': 'user', 'content': "<|reserved_special_token_0|>\n" * audio_count + question }] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) llm = LLM(model=model_name, enforce_eager=True, enable_chunked_prefill=False, max_model_len=8192, limit_mm_per_prompt={"audio": audio_count}) stop_token_ids = None return llm, prompt, stop_token_ids model_example_map = { "ultravox": run_ultravox, } def main(args): model = args.model_type if model not in model_example_map: raise ValueError(f"Model type {model} is not supported.") audio_count = args.num_audios llm, prompt, stop_token_ids = model_example_map[model]( question_per_audio_count[audio_count - 1], audio_count) # We set temperature to 0.2 so that outputs can be different # even when all prompts are identical when running batch inference. sampling_params = SamplingParams(temperature=0.2, max_tokens=64, stop_token_ids=stop_token_ids) assert args.num_prompts > 0 inputs = { "prompt": prompt, "multi_modal_data": { "audio": [ asset.audio_and_sample_rate for asset in audio_assets[:audio_count] ] }, } if args.num_prompts > 1: # Batch inference inputs = [inputs] * args.num_prompts outputs = llm.generate(inputs, sampling_params=sampling_params) for o in outputs: generated_text = o.outputs[0].text print(generated_text) if __name__ == "__main__": parser = FlexibleArgumentParser( description='Demo on using Aphrodite for offline inference with ' 'audio language models') parser.add_argument('--model-type', '-m', type=str, default="ultravox", choices=model_example_map.keys(), help='Huggingface "model_type".') parser.add_argument('--num-prompts', type=int, default=1, help='Number of prompts to run.') parser.add_argument("--num-audios", type=int, default=1, choices=[1, 2], help="Number of audio items per prompt.") args = parser.parse_args() main(args)