from typing import AsyncGenerator, List, Optional, Protocol, runtime_checkable from transformers import PreTrainedTokenizer from aphrodite.common.config import DecodingConfig, ModelConfig from aphrodite.common.outputs import EmbeddingRequestOutput, RequestOutput from aphrodite.common.pooling_params import PoolingParams from aphrodite.common.sampling_params import SamplingParams from aphrodite.inputs.data import PromptType from aphrodite.lora.request import LoRARequest from aphrodite.modeling.layers.sampler import SamplerOutput from aphrodite.processing.scheduler import SchedulerOutputs from aphrodite.prompt_adapter.request import PromptAdapterRequest @runtime_checkable class EngineClient(Protocol): """Protocol class for Clients to Engine""" @property def is_running(self) -> bool: ... @property def is_stopped(self) -> bool: ... @property def errored(self) -> bool: ... @property def dead_error(self) -> BaseException: ... def generate( self, prompt: PromptType, sampling_params: SamplingParams, request_id: str, lora_request: Optional[LoRARequest] = None, prompt_adapter_request: Optional[PromptAdapterRequest] = None ) -> AsyncGenerator[RequestOutput, None]: """Generates outputs for a request""" ... def encode( self, prompt: PromptType, pooling_params: PoolingParams, request_id: str, lora_request: Optional[LoRARequest] = None, ) -> AsyncGenerator[EmbeddingRequestOutput, None]: """Generate outputs for a request from an embedding model.""" ... async def abort(self, request_id: str) -> None: """Abort a request. Args: request_id: The unique id of the request. """ ... async def get_model_config(self) -> ModelConfig: """Get the model configuration of the Aphrodite engine.""" ... async def get_decoding_config(self) -> DecodingConfig: """Get the decoding configuration of the Aphrodite engine.""" ... async def get_tokenizer( self, lora_request: Optional[LoRARequest] = None, ) -> PreTrainedTokenizer: """Get the appropriate Tokenizer for the request""" ... async def do_log_stats( self, scheduler_outputs: Optional[SchedulerOutputs] = None, model_output: Optional[List[SamplerOutput]] = None, ) -> None: pass async def check_health(self) -> None: """Raise if unhealthy"""