import asyncio import base64 import time from typing import (AsyncGenerator, AsyncIterator, List, Optional, Tuple, Union, cast) import numpy as np from fastapi import Request from loguru import logger from aphrodite.common.config import ModelConfig from aphrodite.common.outputs import EmbeddingRequestOutput from aphrodite.common.utils import merge_async_iterators, random_uuid from aphrodite.endpoints.logger import RequestLogger from aphrodite.endpoints.openai.protocol import (EmbeddingRequest, EmbeddingResponse, EmbeddingResponseData, ErrorResponse, UsageInfo) from aphrodite.endpoints.openai.serving_engine import (BaseModelPath, OpenAIServing) from aphrodite.engine.protocol import EngineClient TypeTokenIDs = List[int] def request_output_to_embedding_response( final_res_batch: List[EmbeddingRequestOutput], request_id: str, created_time: int, model_name: str, encoding_format: str) -> EmbeddingResponse: data: List[EmbeddingResponseData] = [] num_prompt_tokens = 0 for idx, final_res in enumerate(final_res_batch): prompt_token_ids = final_res.prompt_token_ids embedding = final_res.outputs.embedding if encoding_format == "base64": # Force to use float32 for base64 encoding # to match the OpenAI python client behavior embedding_bytes = np.array(embedding, dtype="float32").tobytes() embedding = base64.b64encode(embedding_bytes).decode("utf-8") embedding_data = EmbeddingResponseData(index=idx, embedding=embedding) data.append(embedding_data) num_prompt_tokens += len(prompt_token_ids) usage = UsageInfo( prompt_tokens=num_prompt_tokens, total_tokens=num_prompt_tokens, ) return EmbeddingResponse( id=request_id, created=created_time, model=model_name, data=data, usage=usage, ) class OpenAIServingEmbedding(OpenAIServing): def __init__( self, engine_client: EngineClient, model_config: ModelConfig, base_model_paths: List[BaseModelPath], *, request_logger: Optional[RequestLogger], ): super().__init__(engine_client=engine_client, model_config=model_config, base_model_paths=base_model_paths, lora_modules=None, prompt_adapters=None, request_logger=request_logger) self._enabled = self._check_embedding_mode(model_config.embedding_mode) async def create_embedding( self, request: EmbeddingRequest, raw_request: Optional[Request] = None ) -> Union[ErrorResponse, EmbeddingResponse]: """Completion API similar to OpenAI's API. See https://platform.openai.com/docs/api-reference/embeddings/create for the API specification. This API mimics the OpenAI Embedding API. """ if not self._enabled: return self.create_error_response("Embedding API disabled") error_check_ret = await self._check_model(request) if error_check_ret is not None: return error_check_ret encoding_format = (request.encoding_format if request.encoding_format else "float") if request.dimensions is not None: return self.create_error_response( "dimensions is currently not supported") model_name = request.model request_id = f"embd-{random_uuid()}" created_time = int(time.monotonic()) # Schedule the request and get the result generator. generators: List[AsyncGenerator[EmbeddingRequestOutput, None]] = [] try: ( lora_request, prompt_adapter_request, ) = self._maybe_get_adapters(request) tokenizer = await self.engine_client.get_tokenizer(lora_request) pooling_params = request.to_pooling_params() prompts = list( self._tokenize_prompt_input_or_inputs( request, tokenizer, request.input, )) for i, prompt_inputs in enumerate(prompts): request_id_item = f"{request_id}-{i}" self._log_inputs(request_id_item, prompt_inputs, params=pooling_params, lora_request=lora_request, prompt_adapter_request=prompt_adapter_request) if prompt_adapter_request is not None: raise NotImplementedError( "Prompt adapter is not supported " "for embedding models") generator = self.engine_client.encode( {"prompt_token_ids": prompt_inputs["prompt_token_ids"]}, pooling_params, request_id_item, lora_request=lora_request, ) generators.append(generator) except ValueError as e: # TODO: Use an aphrodite-specific Validation Error return self.create_error_response(str(e)) result_generator: AsyncIterator[Tuple[ int, EmbeddingRequestOutput]] = merge_async_iterators( *generators, is_cancelled=raw_request.is_disconnected if raw_request else None) # Non-streaming response final_res_batch: List[Optional[EmbeddingRequestOutput]] final_res_batch = [None] * len(prompts) try: async for i, res in result_generator: final_res_batch[i] = res for final_res in final_res_batch: assert final_res is not None final_res_batch_checked = cast(List[EmbeddingRequestOutput], final_res_batch) response = request_output_to_embedding_response( final_res_batch_checked, request_id, created_time, model_name, encoding_format) except asyncio.CancelledError: return self.create_error_response("Client disconnected") except ValueError as e: # TODO: Use an aphrodite-specific Validation Error return self.create_error_response(str(e)) return response def _check_embedding_mode(self, embedding_mode: bool): if not embedding_mode: logger.warning( "embedding_mode is False. Embedding API will not work.") else: logger.info("Activating the server engine with embedding enabled.") return embedding_mode