"""Attention layer with xFormers and PagedAttention.""" from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Type import torch from xformers import ops as xops from xformers.ops.fmha.attn_bias import (AttentionBias, BlockDiagonalCausalMask, BlockDiagonalMask, LowerTriangularMaskWithTensorBias) from aphrodite.attention.backends.abstract import (AttentionBackend, AttentionImpl, AttentionMetadata, AttentionType) from aphrodite.attention.backends.utils import (CommonAttentionState, CommonMetadataBuilder) from aphrodite.attention.ops.paged_attn import (PagedAttention, PagedAttentionMetadata) class XFormersBackend(AttentionBackend): @staticmethod def get_name() -> str: return "xformers" @staticmethod def get_impl_cls() -> Type["XFormersImpl"]: return XFormersImpl @staticmethod def get_metadata_cls() -> Type["AttentionMetadata"]: return XFormersMetadata @staticmethod def get_builder_cls() -> Type["XFormersMetadataBuilder"]: return XFormersMetadataBuilder @staticmethod def get_state_cls() -> Type["CommonAttentionState"]: return CommonAttentionState @staticmethod def get_kv_cache_shape( num_blocks: int, block_size: int, num_kv_heads: int, head_size: int, ) -> Tuple[int, ...]: return PagedAttention.get_kv_cache_shape(num_blocks, block_size, num_kv_heads, head_size) @staticmethod def swap_blocks( src_kv_cache: torch.Tensor, dst_kv_cache: torch.Tensor, src_to_dst: Dict[int, int], ) -> None: PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst) @staticmethod def copy_blocks( kv_caches: List[torch.Tensor], src_to_dists: torch.Tensor, ) -> None: PagedAttention.copy_blocks(kv_caches, src_to_dists) @dataclass class XFormersMetadata(AttentionMetadata, PagedAttentionMetadata): """Metadata for XFormersbackend. NOTE: Any python object stored here is not updated when it is cuda-graph replayed. If you have values that need to be changed dynamically, it should be stored in tensor. The tensor has to be updated from `CUDAGraphRunner.forward` API. """ # |---------- N-1 iteration --------| # |---------------- N iteration ---------------------| # |- tokenA -|......................|-- newTokens ---| # |---------- context_len ----------| # |-------------------- seq_len ----------------------| # |-- query_len ---| # seq_lens stored as a tensor. seq_lens_tensor: Optional[torch.Tensor] # FIXME: It is for flash attn. # Maximum sequence length among prefill batch. 0 if there are decoding # requests only. max_prefill_seq_len: int # Maximum sequence length among decode batch. 0 if there are prefill # requests only. max_decode_seq_len: int # Whether or not if cuda graph is enabled. # Cuda-graph is currently enabled for decoding only. # TODO: Move `use_cuda_graph` out since it's unrelated to attention. use_cuda_graph: bool # (batch_size,). The sequence length per sequence. Sequence length means # the computed tokens + new tokens None if it is a decoding. seq_lens: Optional[List[int]] = None # FIXME: It is for flash attn. # (batch_size + 1,). The cumulative sequence lengths of the sequences in # the batch, used to index into sequence. E.g., if the sequence length is # [4, 6], it is [0, 4, 10]. seq_start_loc: Optional[torch.Tensor] = None # (batch_size,) A tensor of context lengths (tokens that are computed # so far). context_lens_tensor: Optional[torch.Tensor] = None # Maximum query length in the batch. None for decoding. max_query_len: Optional[int] = None # (batch_size + 1,). The cumulative subquery lengths of the sequences in # the batch, used to index into subquery. E.g., if the subquery length # is [4, 6], it is [0, 4, 10]. query_start_loc: Optional[torch.Tensor] = None # Self-attention prefill/decode metadata cache _cached_prefill_metadata: Optional["XFormersMetadata"] = None _cached_decode_metadata: Optional["XFormersMetadata"] = None # Begin encoder attn & enc/dec cross-attn fields... # Encoder sequence lengths representation encoder_seq_lens: Optional[List[int]] = None encoder_seq_lens_tensor: Optional[torch.Tensor] = None # Maximum sequence length among encoder sequences max_encoder_seq_len: Optional[int] = None # Number of tokens input to encoder num_encoder_tokens: Optional[int] = None # Cross-attention memory-mapping data structures: slot mapping # and block tables cross_slot_mapping: Optional[torch.Tensor] = None cross_block_tables: Optional[torch.Tensor] = None def __post_init__(self): # Set during the execution of the first attention op. # It is a list because it is needed to set per prompt # when alibi slopes is used. It is because of the limitation # from xformer API. # will not appear in the __repr__ and __init__ self.attn_bias: Optional[List[AttentionBias]] = None self.encoder_attn_bias: Optional[List[AttentionBias]] = None self.cross_attn_bias: Optional[List[AttentionBias]] = None @property def is_all_encoder_attn_metadata_set(self): ''' All attention metadata required for encoder attention is set. ''' return ((self.encoder_seq_lens is not None) and (self.encoder_seq_lens_tensor is not None) and (self.max_encoder_seq_len is not None)) @property def is_all_cross_attn_metadata_set(self): ''' All attention metadata required for enc/dec cross-attention is set. Superset of encoder attention required metadata. ''' return (self.is_all_encoder_attn_metadata_set and (self.cross_slot_mapping is not None) and (self.cross_block_tables is not None)) @property def prefill_metadata(self) -> Optional["XFormersMetadata"]: if self.num_prefills == 0: return None if self._cached_prefill_metadata is not None: # Recover cached prefill-phase attention # metadata structure return self._cached_prefill_metadata assert ((self.seq_lens is not None) or (self.encoder_seq_lens is not None)) assert ((self.seq_lens_tensor is not None) or (self.encoder_seq_lens_tensor is not None)) # Compute some attn_metadata fields which default to None query_start_loc = (None if self.query_start_loc is None else self.query_start_loc[:self.num_prefills + 1]) slot_mapping = (None if self.slot_mapping is None else self.slot_mapping[:self.num_prefill_tokens]) seq_lens = (None if self.seq_lens is None else self.seq_lens[:self.num_prefills]) seq_lens_tensor = (None if self.seq_lens_tensor is None else self.seq_lens_tensor[:self.num_prefills]) context_lens_tensor = (None if self.context_lens_tensor is None else self.context_lens_tensor[:self.num_prefills]) block_tables = (None if self.block_tables is None else self.block_tables[:self.num_prefills]) # Construct & cache prefill-phase attention metadata structure self._cached_prefill_metadata = XFormersMetadata( num_prefills=self.num_prefills, num_prefill_tokens=self.num_prefill_tokens, num_decode_tokens=0, slot_mapping=slot_mapping, seq_lens=seq_lens, seq_lens_tensor=seq_lens_tensor, max_query_len=self.max_query_len, max_prefill_seq_len=self.max_prefill_seq_len, max_decode_seq_len=0, query_start_loc=query_start_loc, context_lens_tensor=context_lens_tensor, block_tables=block_tables, use_cuda_graph=False, # Begin encoder & cross attn fields below... encoder_seq_lens=self.encoder_seq_lens, encoder_seq_lens_tensor=self.encoder_seq_lens_tensor, max_encoder_seq_len=self.max_encoder_seq_len, cross_slot_mapping=self.cross_slot_mapping, cross_block_tables=self.cross_block_tables) return self._cached_prefill_metadata @property def decode_metadata(self) -> Optional["XFormersMetadata"]: if self.num_decode_tokens == 0: return None if self._cached_decode_metadata is not None: # Recover cached decode-phase attention # metadata structure return self._cached_decode_metadata assert ((self.seq_lens_tensor is not None) or (self.encoder_seq_lens_tensor is not None)) # Compute some attn_metadata fields which default to None slot_mapping = (None if self.slot_mapping is None else self.slot_mapping[self.num_prefill_tokens:]) seq_lens_tensor = (None if self.seq_lens_tensor is None else self.seq_lens_tensor[self.num_prefills:]) block_tables = (None if self.block_tables is None else self.block_tables[self.num_prefills:]) # Construct & cache decode-phase attention metadata structure self._cached_decode_metadata = XFormersMetadata( num_prefills=0, num_prefill_tokens=0, num_decode_tokens=self.num_decode_tokens, slot_mapping=slot_mapping, seq_lens_tensor=seq_lens_tensor, max_prefill_seq_len=0, max_decode_seq_len=self.max_decode_seq_len, block_tables=block_tables, use_cuda_graph=self.use_cuda_graph, # Begin encoder & cross attn fields below... encoder_seq_lens=self.encoder_seq_lens, encoder_seq_lens_tensor=self.encoder_seq_lens_tensor, max_encoder_seq_len=self.max_encoder_seq_len, cross_slot_mapping=self.cross_slot_mapping, cross_block_tables=self.cross_block_tables) return self._cached_decode_metadata def _get_attn_bias( attn_metadata: XFormersMetadata, attn_type: AttentionType, ) -> Optional[AttentionBias]: ''' Extract appropriate attention bias from attention metadata according to attention type. Arguments: * attn_metadata: Attention metadata structure associated with attention * attn_type: encoder attention, decoder self-attention, encoder/decoder cross-attention Returns: * Appropriate attention bias value given the attention type ''' if attn_type == AttentionType.DECODER: return attn_metadata.attn_bias elif attn_type == AttentionType.ENCODER: return attn_metadata.encoder_attn_bias else: # attn_type == AttentionType.ENCODER_DECODER return attn_metadata.cross_attn_bias def _set_attn_bias( attn_metadata: XFormersMetadata, attn_bias: List[Optional[AttentionBias]], attn_type: AttentionType, ) -> None: ''' Update appropriate attention bias field of attention metadata, according to attention type. Arguments: * attn_metadata: Attention metadata structure associated with attention * attn_bias: The desired attention bias value * attn_type: encoder attention, decoder self-attention, encoder/decoder cross-attention ''' if attn_type == AttentionType.DECODER: attn_metadata.attn_bias = attn_bias elif attn_type == AttentionType.ENCODER: attn_metadata.encoder_attn_bias = attn_bias elif attn_type == AttentionType.ENCODER_DECODER: attn_metadata.cross_attn_bias = attn_bias else: raise AttributeError(f"Invalid attention type {str(attn_type)}") def _get_seq_len_block_table_args( attn_metadata: XFormersMetadata, is_prompt: bool, attn_type: AttentionType, ) -> tuple: ''' The particular choice of sequence-length- and block-table-related attributes which should be extracted from attn_metadata is dependent on the type of attention operation. Decoder attn -> select entirely decoder self-attention-related fields Encoder/decoder cross-attn -> select encoder sequence lengths & cross-attn block-tables fields Encoder attn -> select encoder sequence lengths fields & no block tables Arguments: * attn_metadata: Attention metadata structure associated with attention op * is_prompt: True if prefill, False otherwise * attn_type: encoder attention, decoder self-attention, encoder/decoder cross-attention Returns: * Appropriate sequence-lengths tensor * Appropriate max sequence-length scalar * Appropriate block tables (or None) ''' if attn_type == AttentionType.DECODER: # Decoder self-attention # Choose max_seq_len based on whether we are in prompt_run if is_prompt: max_seq_len = attn_metadata.max_prefill_seq_len else: max_seq_len = attn_metadata.max_decode_seq_len return (attn_metadata.seq_lens_tensor, max_seq_len, attn_metadata.block_tables) elif attn_type == AttentionType.ENCODER_DECODER: # Enc/dec cross-attention KVs match encoder sequence length; # cross-attention utilizes special "cross" block tables return (attn_metadata.encoder_seq_lens_tensor, attn_metadata.max_encoder_seq_len, attn_metadata.cross_block_tables) elif attn_type == AttentionType.ENCODER: # No block tables associated with encoder attention return (attn_metadata.encoder_seq_lens_tensor, attn_metadata.max_encoder_seq_len, None) else: raise AttributeError(f"Invalid attention type {str(attn_type)}") class XFormersMetadataBuilder(CommonMetadataBuilder[XFormersMetadata]): _metadata_cls = XFormersMetadata class XFormersImpl(AttentionImpl[XFormersMetadata]): """ If the input tensors contain prompt tokens, the layout is as follows: |<--------------- num_prefill_tokens ----------------->| |<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->| Otherwise, the layout is as follows: |<----------------- num_decode_tokens ------------------>| |<--decode_0-->|..........|<--decode_M-1-->|<--padding-->| Generation tokens can contain padding when cuda-graph is used. Currently, prompt tokens don't contain any padding. The prompts might have different lengths, while the generation tokens always have length 1. If chunked prefill is enabled, prefill tokens and decode tokens can be batched together in a flattened 1D query. |<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->| |<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->| Currently, cuda graph is disabled for chunked prefill, meaning there's no padding between prefill and decode tokens. """ def __init__( self, num_heads: int, head_size: int, scale: float, num_kv_heads: int, alibi_slopes: Optional[List[float]], sliding_window: Optional[int], kv_cache_dtype: str, blocksparse_params: Optional[Dict[str, Any]] = None, logits_soft_cap: Optional[float] = None, ) -> None: if blocksparse_params is not None: raise ValueError( "XFormers does not support block-sparse attention.") if logits_soft_cap is not None: raise ValueError( "XFormers does not support attention logits soft capping.") self.num_heads = num_heads self.head_size = head_size self.scale = float(scale) self.num_kv_heads = num_kv_heads if alibi_slopes is not None: alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32) self.alibi_slopes = alibi_slopes self.sliding_window = sliding_window self.kv_cache_dtype = kv_cache_dtype assert self.num_heads % self.num_kv_heads == 0 self.num_queries_per_kv = self.num_heads // self.num_kv_heads suppored_head_sizes = PagedAttention.get_supported_head_sizes() if head_size not in suppored_head_sizes: raise ValueError( f"Head size {head_size} is not supported by PagedAttention. " f"Supported head sizes are: {suppored_head_sizes}.") def forward( self, query: torch.Tensor, key: Optional[torch.Tensor], value: Optional[torch.Tensor], kv_cache: Optional[torch.Tensor], attn_metadata: "XFormersMetadata", k_scale: float = 1.0, v_scale: float = 1.0, attn_type: AttentionType = AttentionType.DECODER, ) -> torch.Tensor: """Forward pass with xFormers and PagedAttention. For decoder-only models: query, key and value must be non-None. For encoder/decoder models: * XFormersImpl.forward() may be invoked for both self- and cross- attention layers. * For self-attention: query, key and value must be non-None. * For cross-attention: * Query must be non-None * During prefill, key and value must be non-None; key and value get cached for use during decode. * During decode, key and value may be None, since: (1) key and value tensors were cached during prefill, and (2) cross-attention key and value tensors do not grow during decode A note on how the attn_type (attention type enum) argument impacts attention forward() behavior: * DECODER: normal decoder-only behavior; use decoder self-attention block table * ENCODER: no KV caching; pass encoder sequence attributes (encoder_seq_lens/encoder_seq_lens_tensor/ max_encoder_seq_len) to kernel, in lieu of decoder sequence attributes (seq_lens/seq_lens_tensor/max_seq_len) * ENCODER_DECODER: cross-attention behavior; use cross-attention block table for caching KVs derived from encoder hidden states; since KV sequence lengths will match encoder sequence lengths, pass encoder sequence attributes to kernel (encoder_seq_lens/encoder_seq_lens_tensor/ max_encoder_seq_len) Args: query: shape = [num_tokens, num_heads * head_size] key: shape = [num_tokens, num_kv_heads * head_size] value: shape = [num_tokens, num_kv_heads * head_size] kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size] attn_metadata: Metadata for attention. attn_type: Select attention type, between encoder attention, decoder self-attention, or encoder/decoder cross- attention. Defaults to decoder self-attention, which is the Aphrodite default generally Returns: shape = [num_tokens, num_heads * head_size] """ # Check that appropriate attention metadata attributes are # selected for the desired attention type if (attn_type == AttentionType.ENCODER and (not attn_metadata.is_all_encoder_attn_metadata_set)): raise AttributeError("Encoder attention requires setting " "encoder metadata attributes.") elif (attn_type == AttentionType.ENCODER_DECODER and (not attn_metadata.is_all_cross_attn_metadata_set)): raise AttributeError("Encoder/decoder cross-attention " "requires setting cross-attention " "metadata attributes.") query = query.view(-1, self.num_heads, self.head_size) if key is not None: assert value is not None key = key.view(-1, self.num_kv_heads, self.head_size) value = value.view(-1, self.num_kv_heads, self.head_size) else: assert value is None # Self-attention vs. cross-attention will impact # which KV cache memory-mapping & which # seqlen datastructures we utilize if (attn_type != AttentionType.ENCODER and kv_cache is not None): # KV-cache during decoder-self- or # encoder-decoder-cross-attention, but not # during encoder attention. # # Even if there are no new key/value pairs to cache, # we still need to break out key_cache and value_cache # i.e. for later use by paged attention key_cache, value_cache = PagedAttention.split_kv_cache( kv_cache, self.num_kv_heads, self.head_size) if (key is not None) and (value is not None): if attn_type == AttentionType.ENCODER_DECODER: # Update cross-attention KV cache (prefill-only) # During cross-attention decode, key & value will be None, # preventing this IF-statement branch from running updated_slot_mapping = attn_metadata.cross_slot_mapping else: # Update self-attention KV cache (prefill/decode) updated_slot_mapping = attn_metadata.slot_mapping # Reshape the input keys and values and store them in the cache. # If kv_cache is not provided, the new key and value tensors are # not cached. This happens during the initial memory # profiling run. PagedAttention.write_to_paged_cache(key, value, key_cache, value_cache, updated_slot_mapping, self.kv_cache_dtype, k_scale, v_scale) if attn_type != AttentionType.ENCODER: # Decoder self-attention supports chunked prefill. # Encoder/decoder cross-attention requires no chunked # prefill (100% prefill or 100% decode tokens, no mix) num_prefill_tokens = attn_metadata.num_prefill_tokens num_decode_tokens = attn_metadata.num_decode_tokens else: # Encoder attention - chunked prefill is not applicable; # derive token-count from query shape & and treat them # as 100% prefill tokens assert attn_metadata.num_encoder_tokens is not None num_prefill_tokens = attn_metadata.num_encoder_tokens num_decode_tokens = 0 if attn_type == AttentionType.DECODER: # Only enforce this shape-constraint for decoder # self-attention assert key.shape[0] == num_prefill_tokens + num_decode_tokens assert value.shape[0] == num_prefill_tokens + num_decode_tokens output = torch.empty_like(query) # Query for decode. KV is not needed because it is already cached. decode_query = query[num_prefill_tokens:] # QKV for prefill. query = query[:num_prefill_tokens] if key is not None and value is not None: key = key[:num_prefill_tokens] value = value[:num_prefill_tokens] assert query.shape[0] == num_prefill_tokens assert decode_query.shape[0] == num_decode_tokens if prefill_meta := attn_metadata.prefill_metadata: # Prompt run. if kv_cache is None or prefill_meta.block_tables.numel() == 0: # normal attention. # block tables are empty if the prompt does not have a cached # prefix. out = self._run_memory_efficient_xformers_forward( query, key, value, prefill_meta, attn_type=attn_type) assert out.shape == output[:num_prefill_tokens].shape output[:num_prefill_tokens] = out else: assert prefill_meta.query_start_loc is not None assert prefill_meta.max_query_len is not None # prefix-enabled attention # TODO: this triton kernel has regression issue (broke) to # deal with different data types between KV and FP8 KV cache, # to be addressed separately. out = PagedAttention.forward_prefix( query, key, value, self.kv_cache_dtype, key_cache, value_cache, prefill_meta.block_tables, prefill_meta.query_start_loc, prefill_meta.seq_lens_tensor, prefill_meta.context_lens_tensor, prefill_meta.max_query_len, self.alibi_slopes, self.sliding_window, k_scale, v_scale, ) assert output[:num_prefill_tokens].shape == out.shape output[:num_prefill_tokens] = out if decode_meta := attn_metadata.decode_metadata: ( seq_lens_arg, max_seq_len_arg, block_tables_arg, ) = _get_seq_len_block_table_args(decode_meta, False, attn_type) output[num_prefill_tokens:] = PagedAttention.forward_decode( decode_query, key_cache, value_cache, block_tables_arg, seq_lens_arg, max_seq_len_arg, self.kv_cache_dtype, self.num_kv_heads, self.scale, self.alibi_slopes, k_scale, v_scale, ) # Reshape the output tensor. return output.view(-1, self.num_heads * self.head_size) def _run_memory_efficient_xformers_forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_metadata: XFormersMetadata, attn_type: AttentionType = AttentionType.DECODER, ) -> torch.Tensor: """Attention for 1D query of multiple prompts. Multiple prompt tokens are flattened in to `query` input. See https://facebookresearch.github.io/xformers/components/ops.html for API spec. Args: output: shape = [num_prefill_tokens, num_heads, head_size] query: shape = [num_prefill_tokens, num_heads, head_size] key: shape = [num_prefill_tokens, num_kv_heads, head_size] value: shape = [num_prefill_tokens, num_kv_heads, head_size] attn_metadata: Metadata for attention. attn_type: Select attention type, between encoder attention, decoder self-attention, or encoder/decoder cross- attention. Defaults to decoder self-attention, which is the Aphrodite default generally """ original_query = query if self.num_kv_heads != self.num_heads: # GQA/MQA requires the shape [B, M, G, H, K]. # Note that the output also has the same shape (which is different # from a spec from the doc). query = query.view(query.shape[0], self.num_kv_heads, self.num_queries_per_kv, query.shape[-1]) key = key[:, :, None, :].expand(key.shape[0], self.num_kv_heads, self.num_queries_per_kv, key.shape[-1]) value = value[:, :, None, :].expand(value.shape[0], self.num_kv_heads, self.num_queries_per_kv, value.shape[-1]) # Set attention bias if not provided. This typically happens at # the very attention layer of every iteration. # FIXME: This is a hack. attn_bias = _get_attn_bias(attn_metadata, attn_type) if attn_bias is None: if self.alibi_slopes is None: if (attn_type == AttentionType.ENCODER_DECODER): assert attn_metadata.seq_lens is not None assert attn_metadata.encoder_seq_lens is not None # Default enc/dec cross-attention mask is non-causal attn_bias = BlockDiagonalMask.from_seqlens( attn_metadata.seq_lens, attn_metadata.encoder_seq_lens) elif attn_type == AttentionType.ENCODER: assert attn_metadata.encoder_seq_lens is not None # Default encoder self-attention mask is non-causal attn_bias = BlockDiagonalMask.from_seqlens( attn_metadata.encoder_seq_lens) else: assert attn_metadata.seq_lens is not None # Default decoder self-attention mask is causal attn_bias = BlockDiagonalCausalMask.from_seqlens( attn_metadata.seq_lens) if self.sliding_window is not None: attn_bias = attn_bias.make_local_attention( self.sliding_window) attn_bias = [attn_bias] else: assert attn_metadata.seq_lens is not None attn_bias = _make_alibi_bias(self.alibi_slopes, self.num_kv_heads, query.dtype, attn_metadata.seq_lens) _set_attn_bias(attn_metadata, attn_bias, attn_type) # No alibi slopes. # TODO: Too many view operations. Let's try to reduce # them in the future for code readability. if self.alibi_slopes is None: # Add the batch dimension. query = query.unsqueeze(0) key = key.unsqueeze(0) value = value.unsqueeze(0) out = xops.memory_efficient_attention_forward( query, key, value, attn_bias=attn_bias[0], p=0.0, scale=self.scale) return out.view_as(original_query) # Attention with alibi slopes. # FIXME: Because xformers does not support dynamic sequence # lengths with custom attention bias, we process each prompt one by # one. This is inefficient, especially when we have many short prompts. assert attn_metadata.seq_lens is not None output = torch.empty_like(original_query) start = 0 for i, seq_len in enumerate(attn_metadata.seq_lens): end = start + seq_len out = xops.memory_efficient_attention_forward( query[None, start:end], key[None, start:end], value[None, start:end], attn_bias=attn_bias[i], p=0.0, scale=self.scale) # TODO: Unnecessary copy. Optimize. output[start:end].copy_(out.view_as(original_query[start:end])) start += seq_len return output def _make_alibi_bias( alibi_slopes: torch.Tensor, num_kv_heads: int, dtype: torch.dtype, seq_lens: List[int], ) -> List[AttentionBias]: attn_biases: List[AttentionBias] = [] for seq_len in seq_lens: bias = torch.arange(seq_len, dtype=dtype) # NOTE: HF uses # `bias = bias[None, :].repeat(seq_len, 1)` # here. We find that both biases give the same results, but # the bias below more accurately follows the original ALiBi # paper. # Calculate a matrix where each element represents ith element- jth # element. bias = bias[None, :] - bias[:, None] padded_len = (seq_len + 7) // 8 * 8 num_heads = alibi_slopes.shape[0] bias = torch.empty( 1, # batch size num_heads, seq_len, padded_len, device=alibi_slopes.device, dtype=dtype, )[:, :, :, :seq_len].copy_(bias) bias.mul_(alibi_slopes[:, None, None]) if num_heads != num_kv_heads: bias = bias.unflatten(1, (num_kv_heads, num_heads // num_kv_heads)) attn_biases.append(LowerTriangularMaskWithTensorBias(bias)) return attn_biases