import argparse import asyncio import contextlib import datetime import enum import gc import math import os import socket import subprocess import sys import tempfile import threading import uuid import warnings from asyncio import FIRST_COMPLETED, ensure_future from functools import lru_cache, partial, wraps from platform import uname from typing import (Any, AsyncGenerator, Awaitable, Callable, Dict, Generic, Hashable, Iterable, List, Literal, Optional, OrderedDict, Set, Tuple, Type, TypeVar, Union, overload) from uuid import uuid4 import numpy as np import numpy.typing as npt import psutil import torch import torch.types from loguru import logger from rich.progress import (BarColumn, MofNCompleteColumn, Progress, SpinnerColumn, TextColumn, TimeElapsedColumn) from typing_extensions import ParamSpec, TypeIs, assert_never from aphrodite.common.logger import enable_trace_function_call from aphrodite.distributed import get_tensor_model_parallel_rank # Exception strings for non-implemented encoder/decoder scenarios STR_NOT_IMPL_ENC_DEC_SWA = \ "Sliding window attention for encoder/decoder models " + \ "is not currently supported." STR_NOT_IMPL_ENC_DEC_PREFIX_CACHE = \ "Prefix caching for encoder/decoder models " + \ "is not currently supported." STR_NOT_IMPL_ENC_DEC_CHUNKED_PREFILL = \ "Chunked prefill for encoder/decoder models " + \ "is not currently supported." STR_NOT_IMPL_ENC_DEC_LOGIT_SOFTCAP = ( "Models with logits_soft_cap " "require FlashInfer backend, which is " "currently not supported for encoder/decoder " "models.") STR_NOT_IMPL_ENC_DEC_LORA = ("LoRA is currently not currently " "supported with encoder/decoder " "models.") STR_NOT_IMPL_ENC_DEC_PP = ("Pipeline parallelism is not " "currently supported with " "encoder/decoder models.") STR_NOT_IMPL_ENC_DEC_MM = ("Multimodal is not currently " "supported with encoder/decoder " "models.") STR_NOT_IMPL_ENC_DEC_SPEC_DEC = ("Speculative decoding is not " "currently supported with encoder/" "decoder models.") STR_NOT_IMPL_ENC_DEC_CUDAGRAPH = ("CUDAGraph is not " "currently supported with encoder/" "decoder models.") STR_NOT_IMPL_ENC_DEC_BACKEND = ("XFormers is the only backend " "currently supported with encoder/" "decoder models.") STR_NOT_IMPL_ENC_DEC_PROMPT_ADAPTER = ("Prompt adapters are not " "currently supported with encoder/" "decoder models.") # Efficiently import all enc/dec error strings # rather than having to import all of the above STR_NOT_IMPL_ENC_DEC_ERR_STRS = { "STR_NOT_IMPL_ENC_DEC_SWA": STR_NOT_IMPL_ENC_DEC_SWA, "STR_NOT_IMPL_ENC_DEC_PREFIX_CACHE": STR_NOT_IMPL_ENC_DEC_PREFIX_CACHE, "STR_NOT_IMPL_ENC_DEC_CHUNKED_PREFILL": STR_NOT_IMPL_ENC_DEC_CHUNKED_PREFILL, "STR_NOT_IMPL_ENC_DEC_LOGIT_SOFTCAP": STR_NOT_IMPL_ENC_DEC_LOGIT_SOFTCAP, "STR_NOT_IMPL_ENC_DEC_LORA": STR_NOT_IMPL_ENC_DEC_LORA, "STR_NOT_IMPL_ENC_DEC_PP": STR_NOT_IMPL_ENC_DEC_PP, "STR_NOT_IMPL_ENC_DEC_MM": STR_NOT_IMPL_ENC_DEC_MM, "STR_NOT_IMPL_ENC_DEC_SPEC_DEC": STR_NOT_IMPL_ENC_DEC_SPEC_DEC, "STR_NOT_IMPL_ENC_DEC_CUDA_GRAPH": STR_NOT_IMPL_ENC_DEC_CUDAGRAPH, "STR_NOT_IMPL_ENC_DEC_BACKEND": STR_NOT_IMPL_ENC_DEC_BACKEND, "STR_NOT_IMPL_ENC_DEC_PROMPT_ADAPTER": STR_NOT_IMPL_ENC_DEC_PROMPT_ADAPTER, } # Constants related to forcing the attention backend selection # String name of register which may be set in order to # force auto-selection of attention backend by Attention # wrapper STR_BACKEND_ENV_VAR: str = "APHRODITE_ATTENTION_BACKEND" # Possible string values of STR_BACKEND_ENV_VAR # register, corresponding to possible backends STR_FLASHINFER_ATTN_VAL: str = "FLASHINFER" STR_TORCH_SDPA_ATTN_VAL: str = "TORCH_SDPA" STR_ROCM_FLASH_ATTN_VAL: str = "ROCM_FLASH" STR_XFORMERS_ATTN_VAL: str = "XFORMERS" STR_FLASH_ATTN_VAL: str = "FLASH_ATTN" STR_INVALID_VAL: str = "INVALID" GiB_bytes = 1 << 30 """The number of bytes in one gibibyte (GiB).""" STR_DTYPE_TO_TORCH_DTYPE = { "half": torch.half, "bfloat16": torch.bfloat16, "float": torch.float, "fp8": torch.uint8, "fp8_e4m3": torch.uint8, "fp8_e5m2": torch.uint8, } TORCH_DTYPE_TO_NUMPY_DTYPE = { torch.float16: np.float16, torch.float32: np.float32, torch.float64: np.float64, torch.uint8: np.uint8, torch.int32: np.int32, torch.int64: np.int64, } P = ParamSpec('P') K = TypeVar("K") T = TypeVar("T") U = TypeVar("U") class _Sentinel: ... ALL_PINNED_SENTINEL = _Sentinel() class Device(enum.Enum): GPU = enum.auto() CPU = enum.auto() class Counter: def __init__(self, start: int = 0) -> None: self.counter = start def __next__(self) -> int: i = self.counter self.counter += 1 return i def reset(self) -> None: self.counter = 0 class LRUCache(Generic[T]): def __init__(self, capacity: int): self.cache: OrderedDict[Hashable, T] = OrderedDict() self.pinned_items: Set[Hashable] = set() self.capacity = capacity def __contains__(self, key: Hashable) -> bool: return key in self.cache def __len__(self) -> int: return len(self.cache) def __getitem__(self, key: Hashable) -> T: value = self.cache[key] # Raise KeyError if not exists self.cache.move_to_end(key) return value def __setitem__(self, key: Hashable, value: T) -> None: self.put(key, value) def __delitem__(self, key: Hashable) -> None: self.pop(key) def touch(self, key: Hashable) -> None: self.cache.move_to_end(key) def get(self, key: Hashable, default_value: Optional[T] = None) -> Optional[T]: value: Optional[T] if key in self.cache: value = self.cache[key] self.cache.move_to_end(key) else: value = default_value return value def put(self, key: Hashable, value: T) -> None: self.cache[key] = value self.cache.move_to_end(key) self._remove_old_if_needed() def pin(self, key: Hashable) -> None: """ Pins a key in the cache preventing it from being evicted in the LRU order. """ if key not in self.cache: raise ValueError(f"Cannot pin key: {key} not in cache.") self.pinned_items.add(key) def _unpin(self, key: Hashable) -> None: self.pinned_items.remove(key) def _on_remove(self, key: Hashable, value: Optional[T]): pass def remove_oldest(self, remove_pinned=False): if not self.cache: return if not remove_pinned: # pop the oldest item in the cache that is not pinned lru_key = next( (key for key in self.cache if key not in self.pinned_items), ALL_PINNED_SENTINEL) if lru_key is ALL_PINNED_SENTINEL: raise RuntimeError("All items are pinned, " "cannot remove oldest from the cache.") else: lru_key = next(iter(self.cache)) self.pop(lru_key) def _remove_old_if_needed(self) -> None: while len(self.cache) > self.capacity: self.remove_oldest() def pop(self, key: Hashable, default_value: Optional[T] = None) -> Optional[T]: run_on_remove = key in self.cache value: Optional[T] = self.cache.pop(key, default_value) # remove from pinned items if key in self.pinned_items: self._unpin(key) if run_on_remove: self._on_remove(key, value) return value def clear(self): while len(self.cache) > 0: self.remove_oldest(remove_pinned=True) self.cache.clear() class PyObjectCache: """Used to cache python objects to avoid object allocations across scheduler iterations. """ def __init__(self, obj_builder): self._obj_builder = obj_builder self._index = 0 self._obj_cache = [] for _ in range(128): self._obj_cache.append(self._obj_builder()) def _grow_cache(self): # Double the size of the cache num_objs = len(self._obj_cache) for _ in range(num_objs): self._obj_cache.append(self._obj_builder()) def get_object(self): """Returns a pre-allocated cached object. If there is not enough objects, then the cache size will double. """ if self._index >= len(self._obj_cache): self._grow_cache() assert self._index < len(self._obj_cache) obj = self._obj_cache[self._index] self._index += 1 return obj def reset(self): """Makes all cached-objects available for the next scheduler iteration. """ self._index = 0 def is_hip() -> bool: return torch.version.hip is not None @lru_cache(maxsize=None) def is_cpu() -> bool: from importlib.metadata import PackageNotFoundError, version try: return "cpu" in version("aphrodite-engine") except PackageNotFoundError: return False @lru_cache(maxsize=None) def is_openvino() -> bool: from importlib.metadata import PackageNotFoundError, version try: return "openvino" in version("aphrodite-engine") except PackageNotFoundError: return False @lru_cache(maxsize=None) def is_neuron() -> bool: try: import transformers_neuronx except ImportError: transformers_neuronx = None return transformers_neuronx is not None @lru_cache(maxsize=None) def is_xpu() -> bool: from importlib.metadata import version is_xpu_flag = "xpu" in version("aphrodite-engine") # aphrodite is not build with xpu if not is_xpu_flag: return False try: import intel_extension_for_pytorch as ipex # noqa: F401 _import_ipex = True except ImportError as e: logger.warning(f"Import Error for IPEX: {e.msg}") _import_ipex = False # ipex dependency is not ready if not _import_ipex: logger.warning("not found ipex lib") return False return hasattr(torch, "xpu") and torch.xpu.is_available() @lru_cache(maxsize=None) def get_max_shared_memory_bytes(gpu: int = 0) -> int: """Returns the maximum shared memory per thread block in bytes.""" from aphrodite import _custom_ops as ops max_shared_mem = ( ops.get_max_shared_memory_per_block_device_attribute(gpu)) # value 0 will cause MAX_SEQ_LEN become negative and test_attention.py # will fail assert max_shared_mem > 0, "max_shared_mem can not be zero" return int(max_shared_mem) def get_cpu_memory() -> int: """Returns the total CPU memory of the node in bytes.""" return psutil.virtual_memory().total def random_uuid() -> str: return str(uuid.uuid4().hex) @lru_cache(maxsize=None) def get_aphrodite_instance_id(): """ If the environment variable APHRODITE_INSTANCE_ID is set, return it. Otherwise, return a random UUID. Instance id represents an instance of the Aphrodite. All processes in the same instance should have the same instance id. """ return os.environ.get("APHRODITE_INSTANCE_ID", f"aphrodite-instance-{random_uuid()}") @lru_cache(maxsize=None) def in_wsl() -> bool: # Reference: https://github.com/microsoft/WSL/issues/4071 return "microsoft" in " ".join(uname()).lower() @lru_cache(maxsize=None) def in_windows() -> bool: return sys.platform.startswith("win32") def make_async(func: Callable[P, T]) -> Callable[P, Awaitable[T]]: """Take a blocking function, and run it on in an executor thread. This function prevents the blocking function from blocking the asyncio event loop. The code in this function needs to be thread safe. """ def _async_wrapper(*args: P.args, **kwargs: P.kwargs) -> asyncio.Future: loop = asyncio.get_event_loop() p_func = partial(func, *args, **kwargs) return loop.run_in_executor(executor=None, func=p_func) return _async_wrapper async def iterate_with_cancellation( iterator: AsyncGenerator[T, None], is_cancelled: Callable[[], Awaitable[bool]], ) -> AsyncGenerator[T, None]: """Convert async iterator into one that polls the provided function at least once per second to check for client cancellation. """ # Can use anext() in python >= 3.10 awaits = [ensure_future(iterator.__anext__())] while True: done, pending = await asyncio.wait(awaits, timeout=1) if await is_cancelled(): with contextlib.suppress(BaseException): awaits[0].cancel() await iterator.aclose() raise asyncio.CancelledError("client cancelled") if done: try: item = await awaits[0] awaits[0] = ensure_future(iterator.__anext__()) yield item except StopAsyncIteration: # we are done return async def merge_async_iterators( *iterators: AsyncGenerator[T, None], is_cancelled: Optional[Callable[[], Awaitable[bool]]] = None, ) -> AsyncGenerator[Tuple[int, T], None]: """Merge multiple asynchronous iterators into a single iterator. This method handle the case where some iterators finish before others. When it yields, it yields a tuple (i, item) where i is the index of the iterator that yields the item. It also optionally polls a provided function at least once per second to check for client cancellation. """ # Can use anext() in python >= 3.10 awaits = { ensure_future(pair[1].__anext__()): pair for pair in enumerate(iterators) } timeout = None if is_cancelled is None else 1 try: while awaits: done, pending = await asyncio.wait(awaits.keys(), return_when=FIRST_COMPLETED, timeout=timeout) if is_cancelled is not None and await is_cancelled(): raise asyncio.CancelledError("client cancelled") for d in done: pair = awaits.pop(d) try: item = await d i, it = pair awaits[ensure_future(it.__anext__())] = pair yield i, item except StopAsyncIteration: pass finally: # Cancel any remaining iterators for f, (_, it) in awaits.items(): with contextlib.suppress(BaseException): f.cancel() await it.aclose() def get_ip() -> str: host_ip = os.environ.get("HOST_IP") if host_ip: return host_ip # IP is not set, try to get it from the network interface # try ipv4 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) try: s.connect(("8.8.8.8", 80)) # Doesn't need to be reachable return s.getsockname()[0] except Exception: pass # try ipv6 try: s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) # Google's public DNS server, see # https://developers.google.com/speed/public-dns/docs/using#addresses s.connect(("2001:4860:4860::8888", 80)) # Doesn't need to be reachable return s.getsockname()[0] except Exception: pass warnings.warn( "Failed to get the IP address, using 0.0.0.0 by default." "The value can be set by the environment variable HOST_IP.", stacklevel=2) return "0.0.0.0" def get_distributed_init_method(ip: str, port: int) -> str: # Brackets are not permitted in ipv4 addresses, # see https://github.com/python/cpython/issues/103848 return f"tcp://[{ip}]:{port}" if ":" in ip else f"tcp://{ip}:{port}" def get_open_zmq_ipc_path() -> str: if not in_windows(): APHRODITE_RPC_BASE_PATH = os.getenv("APHRODITE_RPC_BASE_PATH", tempfile.gettempdir()) base_rpc_path = APHRODITE_RPC_BASE_PATH return f"ipc://{base_rpc_path}/{uuid4()}" else: # windows doesn't support ipc:// # use tcp:// instead return f"tcp://127.0.0.1:{get_open_port()}" def get_open_port(port: Optional[int] = None) -> int: port = int(os.getenv("APHRODITE_PORT", 0) ) if "APHRODITE_PORT" in os.environ else None if port is not None: while True: try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(("", port)) return port except OSError: port += 1 # Increment port number if already in use logger.info(f"Port {port - 1} is already in use, trying port " f"{port}") # try ipv4 try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(("", 0)) return s.getsockname()[1] except OSError: # try ipv6 with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s: s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(("", 0)) return s.getsockname()[1] def find_process_using_port(port: int) -> Optional[psutil.Process]: for conn in psutil.net_connections(): if conn.laddr.port == port: try: return psutil.Process(conn.pid) except psutil.NoSuchProcess: return None return None def update_environment_variables(envs: Dict[str, str]): for k, v in envs.items(): if k in os.environ and os.environ[k] != v: logger.warning(f"Overwriting environment variable {k} " f"from '{os.environ[k]}' to '{v}'") os.environ[k] = v def chunk_list(lst: List[T], chunk_size: int): """Yield successive chunk_size chunks from lst.""" for i in range(0, len(lst), chunk_size): yield lst[i:i + chunk_size] def cdiv(a: int, b: int) -> int: """Ceiling division.""" return -(a // -b) def _generate_random_fp8( tensor: torch.Tensor, low: float, high: float, ) -> None: # NOTE: Due to NaN and Inf representation for fp8 data type, # it may occur Inf or NaN if we directly use torch.randint # to generate random data for fp8 data. # For example, s.11111.00 in fp8e5m2 format represents Inf. # | E4M3 | E5M2 #-----|-------------|------------------- # Inf | N/A | s.11111.00 # NaN | s.1111.111 | s.11111.{01,10,11} from aphrodite import _custom_ops as ops tensor_tmp = torch.empty_like(tensor, dtype=torch.float16) tensor_tmp.uniform_(low, high) ops.convert_fp8(tensor, tensor_tmp) del tensor_tmp def get_kv_cache_torch_dtype( cache_dtype: Optional[Union[str, torch.dtype]], model_dtype: Optional[Union[str, torch.dtype]] = None) -> torch.dtype: if isinstance(cache_dtype, str): if cache_dtype == "auto": if isinstance(model_dtype, str): torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[model_dtype] elif isinstance(model_dtype, torch.dtype): torch_dtype = model_dtype else: raise ValueError(f"Invalid model dtype: {model_dtype}") elif cache_dtype in ["half", "bfloat16", "float"]: torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[cache_dtype] elif cache_dtype == "fp8": torch_dtype = torch.uint8 else: raise ValueError(f"Invalid kv cache dtype: {cache_dtype}") elif isinstance(cache_dtype, torch.dtype): torch_dtype = cache_dtype else: raise ValueError(f"Invalid kv cache dtype: {cache_dtype}") return torch_dtype def create_kv_caches_with_random_flash( num_blocks: int, block_size: int, num_layers: int, num_heads: int, head_size: int, cache_dtype: Optional[Union[str, torch.dtype]], model_dtype: Optional[Union[str, torch.dtype]] = None, seed: int = 0, device: Optional[str] = "cuda", ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: torch.random.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch_dtype = get_kv_cache_torch_dtype(cache_dtype, model_dtype) key_value_cache_shape = (num_blocks, 2, block_size, num_heads, head_size) scale = head_size**-0.5 key_caches: List[torch.Tensor] = [] value_caches: List[torch.Tensor] = [] for _ in range(num_layers): key_value_cache = torch.empty(size=key_value_cache_shape, dtype=torch_dtype, device=device) if cache_dtype in ["auto", "half", "bfloat16", "float"]: key_value_cache.uniform_(-scale, scale) elif cache_dtype == 'fp8': _generate_random_fp8(key_value_cache, -scale, scale) else: raise ValueError( f"Does not support key cache of type {cache_dtype}") key_caches.append(key_value_cache[:, 0]) value_caches.append(key_value_cache[:, 1]) return key_caches, value_caches def create_kv_caches_with_random( num_blocks: int, block_size: int, num_layers: int, num_heads: int, head_size: int, cache_dtype: Optional[Union[str, torch.dtype]], model_dtype: Optional[Union[str, torch.dtype]] = None, seed: int = 0, device: Optional[str] = "cuda", ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]: if cache_dtype == "fp8" and head_size % 16: raise ValueError( f"Does not support key cache of type fp8 with head_size " f"{head_size}") torch.random.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch_dtype = get_kv_cache_torch_dtype(cache_dtype, model_dtype) scale = head_size**-0.5 x = 16 // torch.tensor([], dtype=torch_dtype).element_size() key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x) key_caches: List[torch.Tensor] = [] for _ in range(num_layers): key_cache = torch.empty(size=key_cache_shape, dtype=torch_dtype, device=device) if cache_dtype in ["auto", "half", "bfloat16", "float"]: key_cache.uniform_(-scale, scale) elif cache_dtype == 'fp8': _generate_random_fp8(key_cache, -scale, scale) else: raise ValueError( f"Does not support key cache of type {cache_dtype}") key_caches.append(key_cache) value_cache_shape = (num_blocks, num_heads, head_size, block_size) value_caches: List[torch.Tensor] = [] for _ in range(num_layers): value_cache = torch.empty(size=value_cache_shape, dtype=torch_dtype, device=device) if cache_dtype in ["auto", "half", "bfloat16", "float"]: value_cache.uniform_(-scale, scale) elif cache_dtype == 'fp8': _generate_random_fp8(value_cache, -scale, scale) else: raise ValueError( f"Does not support value cache of type {cache_dtype}") value_caches.append(value_cache) return key_caches, value_caches @lru_cache def print_warning_once(msg: str) -> None: logger.warning(msg) @lru_cache(maxsize=None) def is_pin_memory_available() -> bool: if in_wsl(): # Pinning memory in WSL is not supported. # https://docs.nvidia.com/cuda/wsl-user-guide/index.html#known-limitations-for-linux-cuda-applications print_warning_once("Using 'pin_memory=False' as WSL is detected. " "This may slow down the performance.") return False elif is_xpu(): print_warning_once("Pin memory is not supported on XPU.") return False elif is_neuron(): print_warning_once("Pin memory is not supported on Neuron.") return False elif is_cpu() or is_openvino(): return False return True class CudaMemoryProfiler: def __init__(self, device: Optional[torch.types.Device] = None): self.device = device def current_memory_usage(self) -> float: # Return the memory usage in bytes. if torch.cuda.is_available(): torch.cuda.reset_peak_memory_stats(self.device) mem = torch.cuda.max_memory_allocated(self.device) elif is_xpu(): torch.xpu.reset_peak_memory_stats(self.device) # type: ignore mem = torch.xpu.max_memory_allocated(self.device) # type: ignore return mem def __enter__(self): self.initial_memory = self.current_memory_usage() # This allows us to call methods of the context manager if needed return self def __exit__(self, exc_type, exc_val, exc_tb): self.final_memory = self.current_memory_usage() self.consumed_memory = self.final_memory - self.initial_memory # Force garbage collection gc.collect() def make_ndarray_with_pad( x: List[List[T]], pad: T, dtype: npt.DTypeLike, *, max_len: Optional[int] = None, ) -> npt.NDArray: """ Make a padded array from 2D inputs. The padding is applied to the end of each inner list until it reaches `max_len`. """ if max_len is None: # Unlike for most functions, map is faster than a genexpr over `len` max_len = max(map(len, x), default=0) padded_x = np.full((len(x), max_len), pad, dtype=dtype) for ind, blocktb in enumerate(x): assert len(blocktb) <= max_len padded_x[ind, :len(blocktb)] = blocktb return padded_x def make_tensor_with_pad( x: List[List[T]], pad: T, dtype: torch.dtype, *, max_len: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, pin_memory: bool = False, ) -> torch.Tensor: """ Make a padded tensor from 2D inputs. The padding is applied to the end of each inner list until it reaches `max_len`. """ np_dtype = TORCH_DTYPE_TO_NUMPY_DTYPE[dtype] padded_x = make_ndarray_with_pad(x, pad, np_dtype, max_len=max_len) tensor = torch.from_numpy(padded_x).to(device) if pin_memory: tensor = tensor.pin_memory() return tensor def async_tensor_h2d( data: list, dtype: torch.dtype, target_device: Union[str, torch.device], pin_memory: bool, ) -> torch.Tensor: """Asynchronously create a tensor and copy it from host to device.""" t = torch.tensor(data, dtype=dtype, pin_memory=pin_memory, device="cpu") return t.to(device=target_device, non_blocking=True) def maybe_expand_dim(tensor: torch.Tensor, target_dims: int, size: int = 1) -> torch.Tensor: """Expand the tensor to the target_dims.""" if tensor.ndim < target_dims: tensor = tensor.view(-1, *([size] * (target_dims - tensor.ndim))) return tensor def get_dtype_size(dtype: torch.dtype) -> int: """Get the size of the data type in bytes.""" return torch.tensor([], dtype=dtype).element_size() # `collections` helpers def is_list_of( value: object, typ: Type[T], *, check: Literal["first", "all"] = "first", ) -> TypeIs[List[T]]: if not isinstance(value, list): return False if check == "first": return len(value) == 0 or isinstance(value[0], typ) elif check == "all": return all(isinstance(v, typ) for v in value) assert_never(check) JSONTree = Union[Dict[str, "JSONTree[T]"], List["JSONTree[T]"], Tuple["JSONTree[T]", ...], T] """A nested JSON structure where the leaves need not be JSON-serializable.""" @overload def json_map_leaves( func: Callable[[T], U], value: Dict[str, JSONTree[T]], ) -> Dict[str, JSONTree[U]]: ... @overload def json_map_leaves( func: Callable[[T], U], value: List[JSONTree[T]], ) -> List[JSONTree[U]]: ... @overload def json_map_leaves( func: Callable[[T], U], value: Tuple[JSONTree[T], ...], ) -> Tuple[JSONTree[U], ...]: ... @overload def json_map_leaves( func: Callable[[T], U], value: JSONTree[T], ) -> JSONTree[U]: ... def json_map_leaves(func: Callable[[T], U], value: JSONTree[T]) -> JSONTree[U]: if isinstance(value, dict): return {k: json_map_leaves(func, v) for k, v in value.items()} elif isinstance(value, list): return [json_map_leaves(func, v) for v in value] elif isinstance(value, tuple): return tuple(json_map_leaves(func, v) for v in value) else: return func(value) def flatten_2d_lists(lists: List[List[T]]) -> List[T]: """Flatten a list of lists to a single list.""" return [item for sublist in lists for item in sublist] def init_cached_hf_modules() -> None: """ Lazy initialization of the Hugging Face modules. """ from transformers.dynamic_module_utils import init_hf_modules init_hf_modules() @lru_cache(maxsize=None) def find_library(lib_name: str) -> str: """ Find the library file in the system. `lib_name` is full filename, with both prefix and suffix. This function resolves `lib_name` to the full path of the library. """ # Adapted from https://github.com/openai/triton/blob/main/third_party/nvidia/backend/driver.py#L19 # noqa # According to https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard # `/sbin/ldconfig` should exist in all Linux systems. # `/sbin/ldconfig` searches the library in the system libs = subprocess.check_output(["/sbin/ldconfig", "-p"]).decode() # each line looks like the following: # libcuda.so.1 (libc6,x86-64) => /lib/x86_64-linux-gnu/libcuda.so.1 locs = [line.split()[-1] for line in libs.splitlines() if lib_name in line] # `LD_LIBRARY_PATH` searches the library in the user-defined paths env_ld_library_path = os.getenv("LD_LIBRARY_PATH") if not locs and env_ld_library_path: locs = [ os.path.join(dir, lib_name) for dir in env_ld_library_path.split(":") if os.path.exists(os.path.join(dir, lib_name)) ] if not locs: raise ValueError(f"Cannot find {lib_name} in the system.") return locs[0] def find_nccl_library() -> str: """ We either use the library file specified by the `APHRODITE_NCCL_SO_PATH` environment variable, or we find the library file brought by PyTorch. After importing `torch`, `libnccl.so.2` or `librccl.so.1` can be found by `ctypes` automatically. """ so_file = os.environ.get("APHRODITE_NCCL_SO_PATH", "") # manually load the nccl library if so_file: logger.debug("Found nccl from environment variable " f"APHRODITE_NCCL_SO_PATH={so_file}") else: if torch.version.cuda is not None: so_file = "libnccl.so.2" elif torch.version.hip is not None: so_file = "librccl.so.1" else: raise ValueError("NCCL only supports CUDA and ROCm backends.") logger.debug(f"Found nccl from library {so_file}") return so_file def enable_trace_function_call_for_thread() -> None: if int(os.getenv("APHRODITE_TRACE_FUNCTION", "0")): tmp_dir = tempfile.gettempdir() filename = (f"APHRODITE_TRACE_FUNCTION_for_process_{os.getpid()}" f"_thread_{threading.get_ident()}_" f"at_{datetime.datetime.now()}.log").replace(" ", "_") log_path = os.path.join(tmp_dir, "aphrodite", get_aphrodite_instance_id(), filename) os.makedirs(os.path.dirname(log_path), exist_ok=True) enable_trace_function_call(log_path) def identity(value: T) -> T: return value F = TypeVar('F', bound=Callable[..., Any]) def deprecate_kwargs( *kws: str, is_deprecated: Union[bool, Callable[[], bool]] = True, additional_message: Optional[str] = None) -> Callable[[F], F]: deprecated_kws = set(kws) if not callable(is_deprecated): is_deprecated = partial(identity, is_deprecated) def wrapper(fn: F) -> F: @wraps(fn) def inner(*args, **kwargs): if is_deprecated(): deprecated_kwargs = kwargs.keys() & deprecated_kws if deprecated_kwargs: msg = ( f"The keyword arguments {deprecated_kwargs} are " "deprecated and will be removed in a future update.") if additional_message is not None: msg += f" {additional_message}" warnings.warn( DeprecationWarning(msg), stacklevel=3, # The inner function takes up one level ) return fn(*args, **kwargs) return inner # type: ignore return wrapper @lru_cache(maxsize=8) def _cuda_device_count_stateless( cuda_visible_devices: Optional[str] = None) -> int: # Note: cuda_visible_devices is not used, but we keep it as an argument for # LRU Cache purposes. # Code below is based on # https://github.com/pytorch/pytorch/blob/ # c1cd946818442aca8c7f812b16d187ce1586c3bc/ # torch/cuda/__init__.py#L831C1-L831C17 import torch.cuda import torch.version if not torch.cuda._is_compiled(): return 0 if is_hip(): # ROCm uses amdsmi instead of nvml for stateless device count # This requires a sufficiently modern version of Torch 2.4.0 raw_count = torch.cuda._device_count_amdsmi() if (hasattr( torch.cuda, "_device_count_amdsmi")) else -1 else: raw_count = torch.cuda._device_count_nvml() r = torch._C._cuda_getDeviceCount() if raw_count < 0 else raw_count return r def cuda_device_count_stateless() -> int: """Get number of CUDA devices, caching based on the value of CUDA_VISIBLE_DEVICES at the time of call. This should be used instead of torch.cuda.device_count() unless CUDA_VISIBLE_DEVICES has already been set to the desired value.""" # This can be removed and simply replaced with torch.cuda.get_device_count # after https://github.com/pytorch/pytorch/pull/122815 is released. return _cuda_device_count_stateless(os.environ.get("CUDA_VISIBLE_DEVICES")) #From: https://stackoverflow.com/a/4104188/2749989 def run_once(f): def wrapper(*args, **kwargs) -> Any: if not wrapper.has_run: # type: ignore[attr-defined] wrapper.has_run = True # type: ignore[attr-defined] return f(*args, **kwargs) wrapper.has_run = False # type: ignore[attr-defined] return wrapper class FlexibleArgumentParser(argparse.ArgumentParser): """ArgumentParser that allows both underscore and dash in names.""" def parse_args(self, args=None, namespace=None): if args is None: args = sys.argv[1:] # Convert underscores to dashes and vice versa in argument names processed_args = [] for arg in args: if arg.startswith('--'): if '=' in arg: key, value = arg.split('=', 1) key = '--' + key[len('--'):].replace('_', '-') processed_args.append(f'{key}={value}') else: processed_args.append('--' + arg[len('--'):].replace('_', '-')) else: processed_args.append(arg) return super().parse_args(processed_args, namespace) async def _run_task_with_lock(task: Callable, lock: asyncio.Lock, *args, **kwargs): """Utility function to run async task in a lock""" async with lock: return await task(*args, **kwargs) def progress_bar(iterable, desc="Processing"): show_progress = get_tensor_model_parallel_rank() == 0 if show_progress: with Progress( SpinnerColumn(), TextColumn("[progress.description]{task.description}"), BarColumn(), MofNCompleteColumn(), TextColumn("[progress.percentage]{task.percentage:>3.0f}%"), TimeElapsedColumn(), ) as progress: task = progress.add_task(f"[cyan]{desc}", total=len(iterable)) for item in iterable: yield item progress.update(task, advance=1) else: yield from iterable def tensor_progress_bar(iterable:Iterable[Tuple[str, torch.Tensor]], final_bytes:int, desc="Processing"): show_progress = get_tensor_model_parallel_rank() == 0 units = 1024 ** (int(math.log2(final_bytes)) // 10) if show_progress: with Progress( SpinnerColumn(), TextColumn("[progress.description]{task.description}"), BarColumn(), # MofNCompleteColumn(), TextColumn("[progress.percentage]{task.percentage:>3.0f}%"), TextColumn("{task.completed:.2f}/{task.total:.2f} GiB"), TimeElapsedColumn(), ) as progress: task = progress.add_task(f"[cyan]{desc}", total=final_bytes/units) for item in iterable: steps = item[1].element_size() * item[1].nelement() / units yield item progress.update(task, advance=steps) else: yield from iterable