from typing import List, Set, Tuple from aphrodite.common.sequence import ExecuteModelRequest from aphrodite.common.utils import (get_distributed_init_method, get_ip, get_open_port, make_async) from aphrodite.executor.executor_base import ExecutorAsyncBase, ExecutorBase from aphrodite.lora.request import LoRARequest from aphrodite.modeling.layers.sampler import SamplerOutput class NeuronExecutor(ExecutorBase): uses_ray: bool = False def _init_executor(self) -> None: assert (self.lora_config is None), "LoRA is not supported for Neuron backend." assert (not self.speculative_config ), "Speculative decoding not yet supported for Neuron backend." # Instantiate the worker and load the model to the device. self._init_worker() def _init_worker(self): from aphrodite.worker.neuron_worker import NeuronWorker distributed_init_method = get_distributed_init_method( get_ip(), get_open_port()) self.driver_worker = NeuronWorker( model_config=self.model_config, parallel_config=self.parallel_config, scheduler_config=self.scheduler_config, device_config=self.device_config, cache_config=self.cache_config, local_rank=0, rank=0, distributed_init_method=distributed_init_method) self.driver_worker.init_device() self.driver_worker.load_model() def determine_num_available_blocks(self) -> Tuple[int, int]: """Determine the number of available KV blocks by invoking the underlying worker. """ return self.driver_worker.determine_num_available_blocks() def initialize_cache(self, num_gpu_blocks: int, num_cpu_blocks: int) -> None: """Initialize the KV cache by invoking the underlying worker. """ self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks) def execute_model( self, execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]: assert (not execute_model_req.blocks_to_swap_in and not execute_model_req.blocks_to_swap_out and not execute_model_req.blocks_to_copy), ( "Cache operations are not supported for Neuron backend.") assert execute_model_req.num_lookahead_slots == 0, ( "lookahead not supported for Neuron backend.") output = self.driver_worker.execute_model(execute_model_req) return output def add_lora(self, lora_request: LoRARequest) -> bool: return self.driver_worker.add_lora(lora_request) def remove_lora(self, lora_id: int) -> bool: return self.driver_worker.remove_lora(lora_id) def list_loras(self) -> Set[int]: return self.driver_worker.list_loras() def pin_lora(self, lora_id: int) -> bool: return self.driver_worker.pin_lora(lora_id) def add_prompt_adapter(self, prompt_adapter_request) -> bool: raise NotImplementedError( "Soft prompt is currently not supported by the Neuron backend.") def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool: raise NotImplementedError( "Soft prompt is currently not supported by the Neuron backend.") def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool: raise NotImplementedError( "Soft prompt is currently not supported by the Neuron backend.") def list_prompt_adapters(self) -> Set[int]: raise NotImplementedError( "Soft prompt is currently not supported by the Neuron backend.") def check_health(self) -> None: # NeuronExecutor will always be healthy as long as # it's running. return class NeuronExecutorAsync(NeuronExecutor, ExecutorAsyncBase): async def execute_model_async( self, execute_model_req: ExecuteModelRequest, ) -> List[SamplerOutput]: output = await make_async(self.driver_worker.execute_model )(execute_model_req=execute_model_req, ) return output async def check_health_async(self) -> None: # NeuronExecutor will always be healthy as long as # it's running. return