# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py # Copyright 2023 The PygmalionAI team. # Copyright 2023 The vLLM team. # Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only DeepseekV2 model.""" from typing import Any, Dict, Iterable, List, Optional, Tuple import torch from torch import nn from transformers import PretrainedConfig from aphrodite.attention import Attention, AttentionMetadata from aphrodite.common.config import CacheConfig from aphrodite.common.sequence import IntermediateTensors, SamplerOutput from aphrodite.common.utils import progress_bar from aphrodite.distributed import (get_tensor_model_parallel_world_size, tensor_model_parallel_all_reduce) from aphrodite.modeling.layers.activation import SiluAndMul from aphrodite.modeling.layers.fused_moe import FusedMoE from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import (ColumnParallelLinear, MergedColumnParallelLinear, ReplicatedLinear, RowParallelLinear) from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.quantization.base_config import QuantizationConfig class DeepseekV2MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, reduce_results: bool = True, ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config) self.down_proj = RowParallelLinear(intermediate_size, hidden_size, bias=False, quant_config=quant_config, reduce_results=reduce_results) if hidden_act != "silu": raise ValueError(f"Unsupported activation: {hidden_act}. " "Only silu is supported for now.") self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class DeepseekV2MoE(nn.Module): def __init__( self, config: PretrainedConfig, quant_config: Optional[QuantizationConfig] = None, ): super().__init__() self.tp_size = get_tensor_model_parallel_world_size() self.routed_scaling_factor = config.routed_scaling_factor self.n_shared_experts = config.n_shared_experts self.routed_scaling_factor = config.routed_scaling_factor if self.tp_size > config.n_routed_experts: raise ValueError( f"Tensor parallel size {self.tp_size} is greater than " f"the number of experts {config.n_routed_experts}.") if config.hidden_act != "silu": raise ValueError(f"Unsupported activation: {config.hidden_act}. " "Only silu is supported for now.") self.experts = FusedMoE(num_experts=config.n_routed_experts, top_k=config.num_experts_per_tok, hidden_size=config.hidden_size, intermediate_size=config.moe_intermediate_size, reduce_results=False, renormalize=config.norm_topk_prob, quant_config=quant_config, use_grouped_topk=True, num_expert_group=config.n_group, topk_group=config.topk_group) self.gate = ReplicatedLinear(config.hidden_size, config.n_routed_experts, bias=False, quant_config=None) if config.n_shared_experts is not None: intermediate_size = (config.moe_intermediate_size * config.n_shared_experts) self.shared_experts = DeepseekV2MLP( hidden_size=config.hidden_size, intermediate_size=intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, reduce_results=False, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: num_tokens, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) if self.n_shared_experts is not None: shared_output = self.shared_experts(hidden_states) # router_logits: (num_tokens, n_experts) router_logits, _ = self.gate(hidden_states) final_hidden_states = self.experts( hidden_states=hidden_states, router_logits=router_logits) * self.routed_scaling_factor if shared_output is not None: final_hidden_states = final_hidden_states + shared_output if self.tp_size > 1: final_hidden_states = tensor_model_parallel_all_reduce( final_hidden_states) return final_hidden_states.view(num_tokens, hidden_dim) def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float: import math if scale <= 1: return 1.0 return 0.1 * mscale * math.log(scale) + 1.0 class DeepseekV2Attention(nn.Module): def __init__( self, config: PretrainedConfig, hidden_size: int, num_heads: int, qk_nope_head_dim: int, qk_rope_head_dim: int, v_head_dim: int, q_lora_rank: int, kv_lora_rank: int, rope_theta: float = 10000, rope_scaling: Optional[Dict[str, Any]] = None, max_position_embeddings: int = 8192, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, layer_idx=None, ) -> None: super().__init__() self.layer_idx = layer_idx self.hidden_size = hidden_size self.qk_nope_head_dim = qk_nope_head_dim self.qk_rope_head_dim = qk_rope_head_dim self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim self.v_head_dim = v_head_dim self.q_lora_rank = q_lora_rank self.kv_lora_rank = kv_lora_rank self.num_heads = num_heads tp_size = get_tensor_model_parallel_world_size() assert num_heads % tp_size == 0 self.num_local_heads = num_heads // tp_size self.scaling = self.qk_head_dim**-0.5 self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings if self.q_lora_rank is not None: self.q_a_proj = ReplicatedLinear(self.hidden_size, self.q_lora_rank, bias=False, quant_config=quant_config) self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps) self.q_b_proj = ColumnParallelLinear(q_lora_rank, self.num_heads * self.qk_head_dim, bias=False, quant_config=quant_config) else: self.q_proj = ColumnParallelLinear(self.hidden_size, self.num_heads * self.qk_head_dim, bias=False, quant_config=quant_config) self.kv_a_proj_with_mqa = ReplicatedLinear(self.hidden_size, self.kv_lora_rank + self.qk_rope_head_dim, bias=False, quant_config=quant_config) self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps) self.kv_b_proj = ColumnParallelLinear( self.kv_lora_rank, self.num_heads * (self.qk_nope_head_dim + self.v_head_dim), bias=False, quant_config=quant_config) # O projection. self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim, self.hidden_size, bias=False, quant_config=quant_config) rope_scaling['type'] = 'deepseek_yarn' self.rotary_emb = get_rope(qk_rope_head_dim, rotary_dim=qk_rope_head_dim, max_position=max_position_embeddings, base=rope_theta, rope_scaling=rope_scaling, is_neox_style=False) if rope_scaling: mscale_all_dim = rope_scaling.get("mscale_all_dim", False) scaling_factor = rope_scaling["factor"] mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim)) self.scaling = self.scaling * mscale * mscale # self.attn = Attention(self.num_heads, # self.qk_head_dim, # self.scaling, # num_kv_heads=self.num_heads) # TODO, support head_size 192 self.attn = Attention(self.num_local_heads, 256, self.scaling, num_kv_heads=self.num_local_heads, cache_config=cache_config, quant_config=quant_config) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: if self.q_lora_rank is not None: q = self.q_a_proj(hidden_states)[0] q = self.q_a_layernorm(q) q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim) else: q = self.q_proj(hidden_states)[0].view(-1, self.num_local_heads, self.qk_head_dim) q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1) latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0] kv_a, _ = latent_cache.split( [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1) latent_cache = latent_cache.unsqueeze(1) kv_a = self.kv_a_layernorm(kv_a.contiguous()) kv = self.kv_b_proj(kv_a)[0] kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim) k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1) k_pe = latent_cache[:, :, self.kv_lora_rank:] q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe) q[..., self.qk_nope_head_dim:] = q_pe k = torch.empty_like(q) k[..., :self.qk_nope_head_dim] = k_nope k[..., self.qk_nope_head_dim:] = k_pe q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim], value=0).view(-1, self.num_local_heads * 256) k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim], value=0).view(-1, self.num_local_heads * 256) v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim], value=0).view(-1, self.num_local_heads * 256) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) attn_output = attn_output.view( -1, self.num_local_heads, 256)[..., :self.v_head_dim].reshape( -1, self.num_local_heads * self.v_head_dim) output, _ = self.o_proj(attn_output) return output class DeepseekV2DecoderLayer(nn.Module): def __init__( self, config: PretrainedConfig, layer_idx: int, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size rope_theta = getattr(config, "rope_theta", 10000) rope_scaling = getattr(config, "rope_scaling", None) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) self.self_attn = DeepseekV2Attention( config=config, hidden_size=self.hidden_size, num_heads=config.num_attention_heads, qk_nope_head_dim=config.qk_nope_head_dim, qk_rope_head_dim=config.qk_rope_head_dim, v_head_dim=config.v_head_dim, q_lora_rank=config.q_lora_rank if hasattr(config, "q_lora_rank") else None, kv_lora_rank=config.kv_lora_rank, rope_theta=rope_theta, rope_scaling=rope_scaling, max_position_embeddings=max_position_embeddings, cache_config=cache_config, quant_config=quant_config, layer_idx=layer_idx, ) if (config.n_routed_experts is not None and layer_idx >= config.first_k_dense_replace and layer_idx % config.moe_layer_freq == 0): self.mlp = DeepseekV2MoE(config=config, quant_config=quant_config) else: self.mlp = DeepseekV2MLP( hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], ) -> torch.Tensor: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm( hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class DeepseekV2Model(nn.Module): fall_back_to_pt_during_load = False def __init__( self, config: PretrainedConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, ) self.layers = nn.ModuleList([ DeepseekV2DecoderLayer(config, layer_idx, cache_config=cache_config, quant_config=quant_config) for layer_idx in range(config.num_hidden_layers) ]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer(positions, hidden_states, kv_caches[i], attn_metadata, residual) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class DeepseekV2ForCausalLM(nn.Module): def __init__( self, config: PretrainedConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, ) -> None: super().__init__() self.config = config self.quant_config = quant_config self.model = DeepseekV2Model(config, cache_config, quant_config) self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, quant_config=quant_config) self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def sample( self, logits: Optional[torch.Tensor], sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] # Params for weights, fp8 weight scales, fp8 activation scales # (param_name, weight_name, expert_id, shard_id) expert_params_mapping = FusedMoE.make_expert_params_mapping( ckpt_gate_proj_name="gate_proj", ckpt_down_proj_name="down_proj", ckpt_up_proj_name="up_proj", num_experts=self.config.n_routed_experts) params_dict = dict(self.named_parameters()) weights_list = list(weights) for name, loaded_weight in progress_bar(weights_list, desc="Loading modules..."): if "rotary_emb.inv_freq" in name: continue for (param_name, weight_name, shard_id) in stacked_params_mapping: # Skip non-stacked layers and experts (experts handled below). if weight_name not in name: continue # We have mlp.experts[0].gate_proj in the checkpoint. # Since we handle the experts below in expert_params_mapping, # we need to skip here BEFORE we update the name, otherwise # name will be updated to mlp.experts[0].gate_up_proj, which # will then be updated below in expert_params_mapping # for mlp.experts[0].gate_gate_up_proj, which breaks load. if (("mlp.experts." in name) and name not in params_dict): continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: for mapping in expert_params_mapping: param_name, weight_name, expert_id, shard_id = mapping if weight_name not in name: continue name = name.replace(weight_name, param_name) param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, name, shard_id=shard_id, expert_id=expert_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)