# Adapted from # https://huggingface.co/tiiuae/falcon-7b/blob/main/configuration_RW.py # Copyright 2023 The PygmalionAI team. # Copyright 2023 The vLLM team. # Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Falcon configuration""" from transformers.configuration_utils import PretrainedConfig class RWConfig(PretrainedConfig): model_type = "falcon" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", "num_kv_heads": "n_head_kv", } def __init__( self, vocab_size=250880, hidden_size=64, n_layer=2, n_head=8, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, bos_token_id=1, eos_token_id=2, hidden_dropout=0.0, attention_dropout=0.0, multi_query=True, n_head_kv=None, alibi=False, bias=False, parallel_attn=False, new_decoder_architecture=False, **kwargs, ) -> None: self.vocab_size = vocab_size # Backward compatibility with n_embed kwarg n_embed = kwargs.pop("n_embed", None) self.hidden_size = hidden_size if n_embed is None else n_embed self.n_layer = n_layer self.n_head = n_head self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.multi_query = multi_query self.n_head_kv = 1 if n_head_kv is None else n_head_kv self.alibi = alibi self.bias = bias self.parallel_attn = parallel_attn self.new_decoder_architecture = new_decoder_architecture if self.hidden_size == 8192: # Hack for falcon-40b self.new_decoder_architecture = True super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) @property def head_dim(self): return self.hidden_size // self.n_head @property def rotary(self): return not self.alibi