"""Test hashing of cache blocks. Run `pytest tests/test_cache_block_hashing.py`. """ from typing import List, Optional import pytest from aphrodite.common.sequence import Sequence from aphrodite.lora.request import LoRARequest from aphrodite.transformers_utils.tokenizer_group import TokenizerGroup # Make two prefixes with different first blocks. prefix_start = [("You are an expert"), ("You are a")] prefix_common = ( " school principal, skilled in effectively managing " "faculty and staff. Draft 10-15 questions for a potential first grade " "Head Teacher for my K-12, all-girls', independent school that emphasizes " "community, joyful discovery, and life-long learning. The candidate is " "coming in for a first-round panel interview for a 8th grade Math " "teaching role. They have 5 years of previous teaching experience " "as an assistant teacher at a co-ed, public school with experience " "in middle school math teaching. Based on this, fulfill " "the following: ") prefixes = [start + prefix_common for start in prefix_start] # Sample prompts. sample_prompts = [ "Hello, my name is", "The president of the United States is", "The capital of France is", "The future of AI is" ] # Helper function. def flatten_2d(li): return [lss for ls in li for lss in ls] @pytest.mark.parametrize("model", ["facebook/opt-125m"]) @pytest.mark.parametrize("block_size", [16]) @pytest.mark.parametrize("max_num_seqs", [256]) @pytest.mark.parametrize("concurrent_lora_int_ids", [[None], [1], [None, 1], [None, 1, 2], [1, 2]]) def test_auto_prefix_caching(model: str, block_size: int, max_num_seqs: int, concurrent_lora_int_ids: List[Optional[int]]): tokenizer = TokenizerGroup( tokenizer_id="facebook/opt-125m", enable_lora=False, max_num_seqs=max_num_seqs, max_input_length=None, ) hashes: List[List[List[int]]] = [] for prefix in prefixes: for lora_int_id in concurrent_lora_int_ids: lora_request = None if lora_int_id is not None: lora_request = LoRARequest( f"example_lora_{lora_int_id}", lora_int_id, f"example/path/to/lora_{lora_int_id}", ) hashes.append([]) prompts = [prefix + prompt for prompt in sample_prompts] seq_id = 0 for prompt in prompts: hashes[-1].append([]) prompt_token_ids = tokenizer.encode(prompt) seq = Sequence(seq_id, inputs={ "prompt": prompt, "prompt_token_ids": prompt_token_ids, }, block_size=block_size, eos_token_id=tokenizer.tokenizer.eos_token_id, lora_request=lora_request) num_blocks = len(prompt_token_ids) // block_size for idx in range(num_blocks): hashes[-1][-1].append(seq.hash_of_block(idx)) seq_id += 1 # Check that hashes made with two prefixes with different first blocks are # different everywhere. for hash0, hash1 in zip(flatten_2d(hashes[0]), flatten_2d(hashes[1])): assert (hash0 != hash1) # Check that hashes of different prompts made with the same prefix are the # same until the hashes that contain the prompt. for hash_pref in hashes: same_hashes = [tuple(h[:-1]) for h in hash_pref] different_hashes = [h[-1] for h in hash_pref] assert (len(set(same_hashes)) == 1) assert (len(set(different_hashes)) == len(different_hashes))