# Copyright 2023 The PygmalionAI team. # Copyright 2023 The vLLM team. # Adapted from # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/parallel_state.py # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """Tensor and pipeline parallel groups.""" import contextlib from typing import Optional import torch from loguru import logger # Tensor model parallel group that the current rank belongs to. _TENSOR_MODEL_PARALLEL_GROUP = None # Pipeline model parallel group that the current rank belongs to. _PIPELINE_MODEL_PARALLEL_GROUP = None # when people blindly call `torch.distributed.all_reduce` etc, # it will use this group. It is initialized with the `backend` # parameter of `init_distributed_environment` below. # Essentially, this is `torch.distributed.group.WORLD`. # We leave a line here to note that this is device-specific. # Note that this variable is not safe to use, because when users # call `init_distributed_environment` first, and then destroy # the process group themselves, this variable will keep a reference to the # destroyed process group, which is not useful. _DEVICE_WORLD_GROUP = None # duing `init_distributed_environment`, we will also initialize a # group with `gloo` backend, to allow direct coordination between # processes through the CPU. _CPU_WORLD_GROUP = None # In summary, after calling `init_distributed_environment`, we will # always have two groups: one for device-specific (and is the default) # and one for CPU. All processes will be part of both groups. # A list of global ranks for each pipeline group to ease calculation of the # source rank when broadcasting from the first or last pipeline stage. _PIPELINE_GLOBAL_RANKS = None _LOCAL_RANK = -1 def get_local_rank(): global _LOCAL_RANK return _LOCAL_RANK def init_distributed_environment( world_size: int = -1, rank: int = -1, distributed_init_method: str = "env://", local_rank: int = -1, backend: str = "nccl", ): logger.debug(f"{world_size=} {rank=} {local_rank=} " f"{distributed_init_method=} {backend=}") if not torch.distributed.is_initialized(): assert distributed_init_method is not None, ( "distributed_init_method must be provided when initializing " "distributed environment") # this backend is used for WORLD torch.distributed.init_process_group( backend=backend, init_method=distributed_init_method, world_size=world_size, rank=rank) global _DEVICE_WORLD_GROUP, _CPU_WORLD_GROUP _DEVICE_WORLD_GROUP = torch.distributed.group.WORLD ranks = list(range(torch.distributed.get_world_size())) _CPU_WORLD_GROUP = torch.distributed.new_group(ranks=ranks, backend="gloo") global _LOCAL_RANK _LOCAL_RANK = local_rank def initialize_model_parallel( tensor_model_parallel_size: int = 1, pipeline_model_parallel_size: int = 1, backend: Optional[str] = None, ) -> None: """ Initialize model parallel groups. Arguments: tensor_model_parallel_size: number of GPUs used for tensor model parallelism. pipeline_model_parallel_size: number of GPUs used for pipeline model parallelism. Let's say we have a total of 8 GPUs denoted by g0 ... g7 and we use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize the model pipeline. The present function will create 4 tensor model-parallel groups and 2 pipeline model-parallel groups: 4 tensor model-parallel groups: [g0, g1], [g2, g3], [g4, g5], [g6, g7] 2 pipeline model-parallel groups: [g0, g2, g4, g6], [g1, g3, g5, g7] Note that for efficiency, the caller should make sure adjacent ranks are on the same DGX box. For example if we are using 2 DGX-1 boxes with a total of 16 GPUs, rank 0 to 7 belong to the first box and ranks 8 to 15 belong to the second box. """ # Get world size and rank. Ensure some consistencies. assert torch.distributed.is_initialized() world_size: int = torch.distributed.get_world_size() # get the backend of _DEVICE_WORLD_GROUP backend = backend or torch.distributed.get_backend() if (world_size != tensor_model_parallel_size * pipeline_model_parallel_size): raise RuntimeError( f"world_size ({world_size}) is not equal to " f"tensor_model_parallel_size ({tensor_model_parallel_size}) x " f"pipeline_model_parallel_size ({pipeline_model_parallel_size})") num_tensor_model_parallel_groups: int = (world_size // tensor_model_parallel_size) num_pipeline_model_parallel_groups: int = (world_size // pipeline_model_parallel_size) rank = torch.distributed.get_rank() # Build the tensor model-parallel groups. global _TENSOR_MODEL_PARALLEL_GROUP assert _TENSOR_MODEL_PARALLEL_GROUP is None, ( "tensor model parallel group is already initialized") for i in range(num_tensor_model_parallel_groups): ranks = range(i * tensor_model_parallel_size, (i + 1) * tensor_model_parallel_size) group = torch.distributed.new_group(ranks, backend=backend) if rank in ranks: _TENSOR_MODEL_PARALLEL_GROUP = group # Build the pipeline model-parallel groups. global _PIPELINE_MODEL_PARALLEL_GROUP global _PIPELINE_GLOBAL_RANKS assert _PIPELINE_MODEL_PARALLEL_GROUP is None, ( "pipeline model parallel group is already initialized") for i in range(num_pipeline_model_parallel_groups): ranks = range(i, world_size, num_pipeline_model_parallel_groups) group = torch.distributed.new_group(ranks, backend=backend) if rank in ranks: _PIPELINE_MODEL_PARALLEL_GROUP = group _PIPELINE_GLOBAL_RANKS = ranks def ensure_model_parallel_initialized( tensor_model_parallel_size: int, pipeline_model_parallel_size: int, backend: Optional[str] = None, ) -> None: """Helper to initialize model parallel groups if they are not initialized, or ensure tensor-parallel and pipeline-parallel sizes are equal to expected values if the model parallel groups are initialized. """ # get the backend of _DEVICE_WORLD_GROUP backend = backend or torch.distributed.get_backend() if not model_parallel_is_initialized(): initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size, backend) return assert ( get_tensor_model_parallel_world_size() == tensor_model_parallel_size ), ("tensor parallel group already initialized, but of unexpected size: " f"{get_tensor_model_parallel_world_size()=} vs. " f"{tensor_model_parallel_size=}") assert (get_pipeline_model_parallel_world_size( ) == pipeline_model_parallel_size), ( "pipeline parallel group already initialized, but of unexpected size: " f"{get_pipeline_model_parallel_world_size()=} vs. " f"{pipeline_model_parallel_size=}") def model_parallel_is_initialized(): """Check if tensor and pipeline parallel groups are initialized.""" return (_TENSOR_MODEL_PARALLEL_GROUP is not None and _PIPELINE_MODEL_PARALLEL_GROUP is not None) def get_cpu_world_group(): """Get the CPU world group.""" assert _CPU_WORLD_GROUP is not None, ("CPU world group is not initialized") return _CPU_WORLD_GROUP def get_tensor_model_parallel_group(): """Get the tensor model parallel group the caller rank belongs to.""" assert _TENSOR_MODEL_PARALLEL_GROUP is not None, ( "tenosr model parallel group is not initialized") return _TENSOR_MODEL_PARALLEL_GROUP def get_pipeline_model_parallel_group(): """Get the pipeline model parallel group the caller rank belongs to.""" assert _PIPELINE_MODEL_PARALLEL_GROUP is not None, ( "pipeline model parallel group is not initialized") return _PIPELINE_MODEL_PARALLEL_GROUP def get_tensor_model_parallel_world_size(): """Return world size for the tensor model parallel group.""" return torch.distributed.get_world_size( group=get_tensor_model_parallel_group()) def get_pipeline_model_parallel_world_size(): """Return world size for the pipeline model parallel group.""" return torch.distributed.get_world_size( group=get_pipeline_model_parallel_group()) def get_tensor_model_parallel_rank(): """Return my rank for the tensor model parallel group.""" return torch.distributed.get_rank(group=get_tensor_model_parallel_group()) def get_pipeline_model_parallel_rank(): """Return my rank for the pipeline model parallel group.""" return torch.distributed.get_rank( group=get_pipeline_model_parallel_group()) def get_tensor_model_parallel_src_rank(): """Calculate the global rank corresponding to the first local rank in the tensor model parallel group.""" global_rank = torch.distributed.get_rank() local_world_size = get_tensor_model_parallel_world_size() return (global_rank // local_world_size) * local_world_size def get_pipeline_model_parallel_first_rank(): """Return the global rank of the first process in the pipeline for the current tensor parallel group""" assert _PIPELINE_GLOBAL_RANKS is not None, ( "Pipeline parallel group is not initialized") return _PIPELINE_GLOBAL_RANKS[0] def get_pipeline_model_parallel_last_rank(): """Return the global rank of the last process in the pipeline for the current tensor parallel group""" assert _PIPELINE_GLOBAL_RANKS is not None, ( "Pipeline parallel group is not initialized") last_rank_local = get_pipeline_model_parallel_world_size() - 1 return _PIPELINE_GLOBAL_RANKS[last_rank_local] def get_pipeline_model_parallel_next_rank(): """Return the global rank that follows the caller in the pipeline""" assert _PIPELINE_GLOBAL_RANKS is not None, ( "Pipeline parallel group is not initialized") rank_in_pipeline = get_pipeline_model_parallel_rank() world_size = get_pipeline_model_parallel_world_size() return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size] def get_pipeline_model_parallel_prev_rank(): """Return the global rank that precedes the caller in the pipeline""" assert _PIPELINE_GLOBAL_RANKS is not None, ( "Pipeline parallel group is not initialized") rank_in_pipeline = get_pipeline_model_parallel_rank() world_size = get_pipeline_model_parallel_world_size() return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size] def destroy_model_parallel(): """Set the groups to none and destroy them.""" global _TENSOR_MODEL_PARALLEL_GROUP if _TENSOR_MODEL_PARALLEL_GROUP: torch.distributed.destroy_process_group(_TENSOR_MODEL_PARALLEL_GROUP) _TENSOR_MODEL_PARALLEL_GROUP = None global _PIPELINE_MODEL_PARALLEL_GROUP if _PIPELINE_MODEL_PARALLEL_GROUP: torch.distributed.destroy_process_group(_PIPELINE_MODEL_PARALLEL_GROUP) _PIPELINE_MODEL_PARALLEL_GROUP = None global _PIPELINE_GLOBAL_RANKS _PIPELINE_GLOBAL_RANKS = None from aphrodite.distributed.device_communicators import pynccl_utils # Destroy the pynccl states if any. pynccl_utils.destroy_process_group() # Whether to use pynccl for nccl all reduce. # We use pynccl for all reduce when using CUDA graph, because torch.distributed # is not well supported by CUDA graph. _ENABLE_PYNCCL_FOR_ALL_REDUCE = False @contextlib.contextmanager def with_pynccl_for_all_reduce(): """use Pynccl instead of torch.distributed for all reduce""" from aphrodite.distributed.device_communicators import pynccl_utils tp_size = get_tensor_model_parallel_world_size() if tp_size == 1: # No-op. # NOTE: We don't initialize Pynccl when tp_size is 1. yield else: global _ENABLE_PYNCCL_FOR_ALL_REDUCE old = _ENABLE_PYNCCL_FOR_ALL_REDUCE _ENABLE_PYNCCL_FOR_ALL_REDUCE = True stream = torch.cuda.current_stream() with pynccl_utils.set_pynccl_stream(stream): yield _ENABLE_PYNCCL_FOR_ALL_REDUCE = old def is_pynccl_enabled_for_all_reduce(): """check if Pynccl is enabled for all reduce""" global _ENABLE_PYNCCL_FOR_ALL_REDUCE return _ENABLE_PYNCCL_FOR_ALL_REDUCE