import time import numpy as np from typing import Dict, List from dataclasses import dataclass from prometheus_client import Counter, Gauge, Histogram, disable_created_metrics from loguru import logger disable_created_metrics() # The begin-* and end* here are used by the documentation generator # to extract the metrics definitions. # begin-metrics-definitions class Metrics: def __init__(self, labelnames: List[str]): # System stats self.gauge_scheduler_running = Gauge( name="aphrodite:num_requests_running", documentation="Number of requests currently running on GPU.", labelnames=labelnames) self.gauge_scheduler_swapped = Gauge( name="aphrodite:num_requests_swapped", documentation="Number of requests swapped to CPU.", labelnames=labelnames) self.gauge_scheduler_waiting = Gauge( name="aphrodite:num_requests_waiting", documentation="Number of requests waiting to be processed.", labelnames=labelnames) self.gauge_gpu_cache_usage = Gauge( name="aphrodite:gpu_cache_usage_perc", documentation="GPU KV-cache usage. 1 means 100 percent usage.", labelnames=labelnames) self.gauge_cpu_cache_usage = Gauge( name="aphrodite:cpu_cache_usage_perc", documentation="CPU KV-cache usage. 1 means 100 percent usage.", labelnames=labelnames) # Raw stats from last model iteration self.counter_prompt_tokens = Counter( name="aphrodite:prompt_tokens_total", documentation="Number of prefill tokens processed.", labelnames=labelnames) self.counter_generation_tokens = Counter( name="aphrodite:generation_tokens_total", documentation="Number of generation tokens processed.", labelnames=labelnames) self.histogram_time_to_first_token = Histogram( name="aphrodite:time_to_first_token_seconds", documentation="Histogram of time to first token in seconds.", labelnames=labelnames, buckets=[ 0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0, 7.5, 10.0 ]) self.histogram_time_per_output_token = Histogram( name="aphrodite:time_per_output_token_seconds", documentation="Histogram of time per output token in seconds.", labelnames=labelnames, buckets=[ 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 2.5 ]) self.histogram_e2e_request_latency = Histogram( name="aphrodite:e2e_request_latency_seconds", documentation="Histogram of end to end request latency in seconds.", labelnames=labelnames, buckets=[1.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 60.0]) # Legacy metrics self.gauge_avg_prompt_throughput = Gauge( name="aphrodite:avg_prompt_throughput_toks_per_s", documentation="Average prefill throughput in tokens/s.", labelnames=labelnames, ) self.gauge_avg_generation_throughput = Gauge( name="aphrodite:avg_generation_throughput_toks_per_s", documentation="Average generation throughput in tokens/s.", labelnames=labelnames, ) # end-metrics-definitions @dataclass class Stats: """Created by AphroditeEngine for use by StatLogger.""" now: float # System stats. num_running: int num_waiting: int num_swapped: int gpu_cache_usage: float cpu_cache_usage: float # Raw stats from last model iteration. num_prompt_tokens: int num_generation_tokens: int time_to_first_tokens: List[float] time_per_output_tokens: List[float] time_e2e_requests: List[float] class StatLogger: """StatLogger is used AphroditeEngine to log to Promethus and Stdout.""" def __init__(self, local_interval: float, labels: Dict[str, str]) -> None: # Metadata for logging locally. self.last_local_log = time.monotonic() self.local_interval = local_interval # Tracked stats over current local logging interval. self.num_prompt_tokens: List[int] = [] self.num_generation_tokens: List[int] = [] # Prometheus metrics self.labels = labels self.metrics = Metrics(labelnames=list(labels.keys())) def _get_throughput(self, tracked_stats: List[int], now: float) -> float: return float(np.sum(tracked_stats) / (now - self.last_local_log)) def _local_interval_elapsed(self, now: float) -> bool: elapsed_time = now - self.last_local_log return elapsed_time > self.local_interval def _log_prometheus(self, stats: Stats) -> None: # Set system stat gauges. self.metrics.gauge_scheduler_running.labels(**self.labels).set( stats.num_running) self.metrics.gauge_scheduler_swapped.labels(**self.labels).set( stats.num_swapped) self.metrics.gauge_scheduler_waiting.labels(**self.labels).set( stats.num_waiting) self.metrics.gauge_gpu_cache_usage.labels(**self.labels).set( stats.gpu_cache_usage) self.metrics.gauge_cpu_cache_usage.labels(**self.labels).set( stats.cpu_cache_usage) # Add to token counters. self.metrics.counter_prompt_tokens.labels(**self.labels).inc( stats.num_prompt_tokens) self.metrics.counter_generation_tokens.labels(**self.labels).inc( stats.num_generation_tokens) # Observe request level latencies in histograms. for ttft in stats.time_to_first_tokens: self.metrics.histogram_time_to_first_token.labels( **self.labels).observe(ttft) for tpot in stats.time_per_output_tokens: self.metrics.histogram_time_per_output_token.labels( **self.labels).observe(tpot) for e2e in stats.time_e2e_requests: self.metrics.histogram_e2e_request_latency.labels( **self.labels).observe(e2e) def _log_prometheus_interval(self, prompt_throughput: float, generation_throughput: float) -> None: # Logs metrics to prometheus that are computed every logging_interval. # Support legacy gauge metrics that make throughput calculations on # the Aphrodite side. # Moving forward, we should use counters like counter_prompt_tokens, # counter_generation_tokens # Which log raw data and calculate summaries using rate() on the # grafana/prometheus side. self.metrics.gauge_avg_prompt_throughput.labels( **self.labels).set(prompt_throughput) self.metrics.gauge_avg_generation_throughput.labels( **self.labels).set(generation_throughput) def log(self, stats: Stats) -> None: """Called by AphroditeEngine. Logs to prometheus and tracked stats every iteration. Logs to Stdout every self.local_interval seconds.""" # Log to prometheus. self._log_prometheus(stats) # Save tracked stats for token counters. self.num_prompt_tokens.append(stats.num_prompt_tokens) self.num_generation_tokens.append(stats.num_generation_tokens) # Log locally every local_interval seconds. if self._local_interval_elapsed(stats.now): # Compute summary metrics for tracked stats (and log them to # prometheus if applicable). prompt_throughput = self._get_throughput(self.num_prompt_tokens, now=stats.now) generation_throughput = self._get_throughput( self.num_generation_tokens, now=stats.now) self._log_prometheus_interval( prompt_throughput=prompt_throughput, generation_throughput=generation_throughput) # Log to stdout. logger.info( f"Avg prompt throughput: {prompt_throughput:.1f} tokens/s, " f"Avg generation throughput: {generation_throughput:.1f} " "tokens/s, " f"Running: {stats.num_running} reqs, " f"Swapped: {stats.num_swapped} reqs, " f"Pending: {stats.num_waiting} reqs, " f"GPU KV cache usage: {stats.gpu_cache_usage * 100:.1f}%, " f"CPU KV cache usage: {stats.cpu_cache_usage * 100:.1f}%") # Reset tracked stats for next interval. self.num_prompt_tokens = [] self.num_generation_tokens = [] self.last_local_log = stats.now