from typing import List, Optional, Union from tqdm import tqdm from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast from aphrodite.lora.request import LoRARequest from aphrodite.engine.args_tools import EngineArgs from aphrodite.engine.aphrodite_engine import AphroditeEngine from aphrodite.common.outputs import RequestOutput from aphrodite.common.sampling_params import SamplingParams from aphrodite.common.utils import Counter class LLM: """An LLM for generating texts from given prompts and sampling parameters. This class includes a tokenizer, a language model (possibly distributed across multiple GPUs), and GPU memory space allocated for intermediate states (aka KV cache). Given a batch of prompts and sampling parameters, this class generates texts from the model, using an intelligent batching mechanism and efficient memory management. NOTE: This class is intended to be used for offline inference. For online serving, use the `AsyncLLMEngine` class instead. NOTE: For the comprehensive list of arguments, see `EngineArgs`. Args: model: The name or path of a HuggingFace Transformers model. tokenizer: The name or path of a HuggingFace Transformers tokenizer. tokenizer_mode: The tokenizer mode. "auto" will use the fast tokenizer if available, and "slow" will always use the slow tokenizer. trust_remote_code: Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer. tensor_parallel_size: The number of GPUs to use for distributed execution with tensor parallelism. dtype: The data type for the model weights and activations. Currently, we support `float32`, `float16`, and `bfloat16`. If `auto`, we use the `torch_dtype` attribute specified in the model config file. However, if the `torch_dtype` in the config is `float32`, we will use `float16` instead. quantization: The method used to quantize the model weights. Currently, we support "awq", "gptq", "quip" and "squeezellm". If None, we first check the `quantization_config` attribute in the model config file. If that is None, we assume the model weights are not quantized and use `dtype` to determine the data type of the weights. revision: The specific model version to use. It can be a branch name, a tag name, or a commit id. seed: The seed to initialize the random number generator for sampling. gpu_memory_utilization: The ratio (between 0 and 1) of GPU memory to reserve for the model weights, activations, and KV cache. Higher values will increase the KV cache size and thus improve the model's throughput. However, if the value is too high, it may cause out-of- memory (OOM) errors. swap_space: The size (GiB) of CPU memory per GPU to use as swap space. This can be used for temporarily storing the states of the requests when their `best_of` sampling parameters are larger than 1. If all requests will have `best_of=1`, you can safely set this to 0. Otherwise, too small values may cause out-of-memory (OOM) errors. enforce_eager: Whether to enforce eager execution. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid. max_context_len_to_capture: Maximum context len covered by CUDA graphs. When a sequence has context length larger than this, we fall back to eager mode. disable_custom_all_reduce: See ParallelConfig. """ def __init__( self, model: str, tokenizer: Optional[str] = None, tokenizer_mode: str = "auto", trust_remote_code: bool = False, tensor_parallel_size: int = 1, dtype: str = "auto", quantization: Optional[str] = None, revision: Optional[str] = None, seed: int = 0, gpu_memory_utilization: float = 0.9, swap_space: int = 4, enforce_eager: bool = False, max_context_len_to_capture: int = 8192, disable_custom_all_reduce: bool = False, **kwargs, ) -> None: if "disable_log_stats" not in kwargs: kwargs["disable_log_stats"] = True engine_args = EngineArgs( model=model, tokenizer=tokenizer, tokenizer_mode=tokenizer_mode, trust_remote_code=trust_remote_code, tensor_parallel_size=tensor_parallel_size, dtype=dtype, quantization=quantization, revision=revision, seed=seed, gpu_memory_utilization=gpu_memory_utilization, swap_space=swap_space, enforce_eager=enforce_eager, max_context_len_to_capture=max_context_len_to_capture, disable_custom_all_reduce=disable_custom_all_reduce, **kwargs, ) self.llm_engine = AphroditeEngine.from_engine_args(engine_args) self.request_counter = Counter() def get_tokenizer( self) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]: return self.llm_engine.tokenizer def set_tokenizer( self, tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast], ) -> None: self.llm_engine.tokenizer = tokenizer def generate( self, prompts: Optional[Union[str, List[str]]] = None, sampling_params: Optional[SamplingParams] = None, prompt_token_ids: Optional[List[List[int]]] = None, use_tqdm: bool = True, lora_request: Optional[LoRARequest] = None, ) -> List[RequestOutput]: """Generates the completions for the input prompts. NOTE: This class automatically batches the given prompts, considering the memory constraint. For the best performance, put all of your prompts into a single list and pass it to this method. Args: prompts: A list of prompts to generate completions for. sampling_params: The sampling parameters for text generation. If None, we use the default sampling parameters. prompt_token_ids: A list of token IDs for the prompts. If None, we use the tokenizer to convert the prompts to token IDs. use_tqdm: Whether to use tqdm to display the progress bar. lora_request: LoRA request to use for generation, if any. Returns: A list of `RequestOutput` objects containing the generated completions in the same order as the input prompts. """ if prompts is None and prompt_token_ids is None: raise ValueError("Either prompts or prompt_token_ids must be " "provided.") if isinstance(prompts, str): # Convert a single prompt to a list. prompts = [prompts] if prompts is not None and prompt_token_ids is not None: if len(prompts) != len(prompt_token_ids): raise ValueError("The lengths of prompts and prompt_token_ids " "must be the same.") if sampling_params is None: # Use default sampling params. sampling_params = SamplingParams() # Add requests to the engine. num_requests = len(prompts) if prompts is not None else len( prompt_token_ids) for i in range(num_requests): prompt = prompts[i] if prompts is not None else None token_ids = None if prompt_token_ids is None else prompt_token_ids[ i] self._add_request(prompt, sampling_params, token_ids, lora_request=lora_request) return self._run_engine(use_tqdm) def _add_request( self, prompt: Optional[str], sampling_params: SamplingParams, prompt_token_ids: Optional[List[int]], lora_request: Optional[LoRARequest] = None, ) -> None: request_id = str(next(self.request_counter)) self.llm_engine.add_request(request_id, prompt, sampling_params, prompt_token_ids, lora_request=lora_request) def _run_engine(self, use_tqdm: bool) -> List[RequestOutput]: # Initialize tqdm. if use_tqdm: num_requests = self.llm_engine.get_num_unfinished_requests() pbar = tqdm(total=num_requests, desc="Processed prompts") # Run the engine. outputs: List[RequestOutput] = [] while self.llm_engine.has_unfinished_requests(): step_outputs = self.llm_engine.step() for output in step_outputs: if output.finished: outputs.append(output) if use_tqdm: pbar.update(1) if use_tqdm: pbar.close() # Sort the outputs by request ID. # This is necessary because some requests may be finished earlier than # its previous requests. outputs = sorted(outputs, key=lambda x: int(x.request_id)) return outputs