# Copyright 2024- the Outlines developers # This file is adapted from # https://github.com/outlines-dev/outlines/blob/main/outlines/serve/vllm.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import math from collections import defaultdict from typing import Union, DefaultDict, Dict, List, Optional import torch from pydantic import BaseModel from outlines.fsm.fsm import RegexFSM from outlines.fsm.json_schema import build_regex_from_schema class RegexLogitsProcessor: def __init__(self, regex_string: str, tokenizer): """Compile the FSM that drives the regex-structured generation. Parameters ---------- regex_string A string that represents a regular expression tokenizer The model's tokenizer """ tokenizer = self.adapt_tokenizer(tokenizer) fsm = RegexFSM(regex_string, tokenizer) self.fsm = fsm def init_state(self): """Initialize the FSM states.""" self.fsm_state: DefaultDict[int, int] = defaultdict(int) def __call__(self, input_ids: List[int], scores: torch.Tensor) -> torch.Tensor: """Use the FSM to bias the logits before sampling the next token.""" seq_id = hash(tuple(input_ids)) if len(input_ids) == 0: self.init_state() else: last_token = input_ids[-1] last_seq_id = hash(tuple(input_ids[:-1])) self.fsm_state[seq_id] = self.fsm.next_state( self.fsm_state[last_seq_id], last_token) allowed_tokens = self.fsm.allowed_token_ids(self.fsm_state[seq_id]) mask = torch.full((scores.shape[-1], ), -math.inf, device=scores.device) mask[allowed_tokens] = 0 scores.add_(mask) return scores def adapt_tokenizer(self, tokenizer): """Adapt vLLM's tokenizer to use to compile the FSM. The API of Outlines tokenizers is slightly different to that of `transformers`. In addition we need to handle the missing spaces to Llama's tokenizer to be able to compile FSMs for this model. """ tokenizer.vocabulary = tokenizer.get_vocab() tokenizer.special_tokens = set(tokenizer.all_special_tokens) def convert_token_to_string(token: str) -> str: from transformers.file_utils import SPIECE_UNDERLINE string = tokenizer.convert_tokens_to_string([token]) # A hack to handle missing spaces to HF's Llama tokenizers if token.startswith(SPIECE_UNDERLINE) or token == "<0x20>": return " " + string return string tokenizer.convert_token_to_string = convert_token_to_string return tokenizer class JSONLogitsProcessor(RegexLogitsProcessor): def __init__( self, schema: Union[str, Dict, BaseModel], tokenizer, whitespace_pattern: Optional[str] = None, ): """Compile the FSM that drives the JSON-guided generation. Parameters ---------- schema A JSON schema that encodes the structure we want the model to generate tokenizer The model's tokenizer whitespace_pattern Pattern to use for JSON syntactic whitespace (doesn't impact string literals) Example: allow only a single space or newline with `whitespace_pattern=r"[\n ]?"` """ if isinstance(schema, type(BaseModel)): schema_str = json.dumps(schema.model_json_schema()) elif isinstance(schema, Dict): schema_str = json.dumps(schema) elif isinstance(schema, str): schema_str = schema else: raise ValueError( f"Cannot parse schema {schema}. The schema must be either " + "a Pydantic object, a dictionary or a string that contains " + "the JSON Schema specification") regex_string = build_regex_from_schema(schema_str, whitespace_pattern) super().__init__(regex_string, tokenizer)