# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py # Copyright 2023 The PygmalionAI team. # Copyright 2023 The vLLM team. # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only GPT-2 model compatible with HuggingFace weights.""" from typing import List, Optional, Tuple import torch from torch import nn from transformers import GPT2Config from aphrodite.modeling.metadata import InputMetadata from aphrodite.modeling.layers.activation import get_act_fn from aphrodite.modeling.layers.attention import PagedAttention from aphrodite.modeling.layers.linear import (ColumnParallelLinear, LinearMethodBase, QKVParallelLinear, RowParallelLinear) from aphrodite.modeling.layers.sampler import Sampler, QuantSampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( VocabParallelEmbedding, ParallelLMHead) from aphrodite.modeling.megatron.parallel_state import ( get_tensor_model_parallel_world_size) from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.modeling.hf_downloader import (default_weight_loader, hf_model_weights_iterator) from aphrodite.common.sequence import SamplerOutput KVCache = Tuple[torch.Tensor, torch.Tensor] class GPT2Attention(nn.Module): def __init__( self, config: GPT2Config, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.hidden_size = config.hidden_size total_num_heads = config.num_attention_heads tensor_model_parallel_world_size = ( get_tensor_model_parallel_world_size()) assert total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = total_num_heads // tensor_model_parallel_world_size self.head_dim = self.hidden_size // total_num_heads self.scale = self.head_dim**-0.5 self.c_attn = QKVParallelLinear( self.hidden_size, self.head_dim, total_num_heads, bias=True, linear_method=linear_method, ) self.c_proj = RowParallelLinear( self.hidden_size, self.hidden_size, bias=True, linear_method=linear_method, ) self.attn = PagedAttention(self.num_heads, self.head_dim, scale=self.scale) def forward( self, hidden_states: torch.Tensor, kv_cache: KVCache, input_metadata: InputMetadata, ) -> torch.Tensor: qkv, _ = self.c_attn(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) key_cache, value_cache = kv_cache attn_output = self.attn(q, k, v, key_cache, value_cache, input_metadata) attn_output, _ = self.c_proj(attn_output) return attn_output class GPT2MLP(nn.Module): def __init__( self, intermediate_size: int, config: GPT2Config, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() hidden_size = config.hidden_size self.c_fc = ColumnParallelLinear( hidden_size, intermediate_size, bias=True, linear_method=linear_method, ) self.c_proj = RowParallelLinear( intermediate_size, hidden_size, bias=True, linear_method=linear_method, ) quant_config = getattr(linear_method, "quant_config", None) self.act = get_act_fn(config.activation_function, quant_config, intermediate_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states, _ = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states, _ = self.c_proj(hidden_states) return hidden_states class GPT2Block(nn.Module): def __init__( self, config: GPT2Config, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() hidden_size = config.hidden_size inner_dim = (config.n_inner if config.n_inner is not None else 4 * hidden_size) self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = GPT2Attention(config, linear_method) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = GPT2MLP(inner_dim, config, linear_method) def forward( self, hidden_states: torch.Tensor, kv_cache: KVCache, input_metadata: InputMetadata, ) -> torch.Tensor: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_output = self.attn( hidden_states=hidden_states, kv_cache=kv_cache, input_metadata=input_metadata, ) # residual connection hidden_states = attn_output + residual residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states return hidden_states class GPT2Model(nn.Module): def __init__( self, config: GPT2Config, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.config = config assert not config.add_cross_attention assert not config.scale_attn_by_inverse_layer_idx assert not config.reorder_and_upcast_attn self.embed_dim = config.hidden_size self.wte = VocabParallelEmbedding(config.vocab_size, self.embed_dim, linear_method=linear_method) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.h = nn.ModuleList([ GPT2Block(config, linear_method) for _ in range(config.num_hidden_layers) ]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, kv_caches: List[KVCache], input_metadata: InputMetadata, ) -> torch.Tensor: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds for i in range(len(self.h)): layer = self.h[i] hidden_states = layer(hidden_states, kv_caches[i], input_metadata) hidden_states = self.ln_f(hidden_states) return hidden_states class GPT2LMHeadModel(nn.Module): def __init__( self, config: GPT2Config, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.config = config self.linear_method = linear_method self.transformer = GPT2Model(config, linear_method) # self.lm_head_weight = self.transformer.wte.weight self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, linear_method=linear_method) self.sampler = Sampler(config.vocab_size) self.quant_sampler = QuantSampler(config.vocab_size) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[KVCache], input_metadata: InputMetadata, ) -> torch.Tensor: hidden_states = self.transformer(input_ids, positions, kv_caches, input_metadata) return hidden_states def sample( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: if (self.linear_method is not None and not self.linear_method.quant_config.merge_weight()): next_tokens = self.quant_sampler(self.lm_head(hidden_states), sampling_metadata) else: next_tokens = self.sampler(self.lm_head.weight, hidden_states, sampling_metadata) return next_tokens def load_weights(self, model_name_or_path: str, cache_dir: Optional[str] = None, load_format: str = "auto", revision: Optional[str] = None): params_dict = dict(self.named_parameters(remove_duplicate=False)) for name, loaded_weight in hf_model_weights_iterator( model_name_or_path, cache_dir, load_format, revision, self.config): if "lm_head" in name and name not in params_dict: # GPT-2 ties the weights of the embedding layer and the final # linear layer. continue if "wte" in name: # Copy word embedding to lm_head head_name = name.replace("transformer.wte", "lm_head") if head_name in params_dict: lm_head_param = params_dict[head_name] weight_loader = getattr(lm_head_param, "weight_loader", default_weight_loader) weight_loader(lm_head_param, loaded_weight) if ".attn.bias" in name or ".attn.masked_bias" in name: # Skip attention mask. # NOTE: "c_attn.bias" should not be skipped. continue if not name.startswith("transformer."): name = "transformer." + name param = params_dict[name] # The HF's GPT-2 implementation uses Conv1D instead of Linear. # Because of this, we need to transpose the weights. # Note(zhuohan): the logic below might break quantized models. for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]: if conv1d_weight_name not in name: continue if not name.endswith(".weight"): continue loaded_weight = loaded_weight.t() weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)