""" Inspired by the OpenAI example found here: https://platform.openai.com/docs/guides/function-calling/parallel-function-calling """ import datetime from openai import OpenAI import json client = OpenAI(api_key="EMPTY", base_url="http://localhost:2242/v1") models = client.models.list() model = models.data[0].id stream = True def get_current_date_utc(): print("Calling get_current_date_utc client side.") return datetime.datetime.now(datetime.timezone.utc).strftime( "The current UTC datetime is (day: %A, date (day/month/year): %d/%m/%Y, time: %H:%M)." ) # Example dummy function hard coded to return the same weather # In production, this could be your backend API or an external API def get_current_weather(location, unit="fahrenheit"): """Get the current weather in a given location""" print("Calling get_current_weather client side.") if "tokyo" in location.lower(): return json.dumps({ "location": "Tokyo", "temperature": "10", "unit": unit }) elif "san francisco" in location.lower(): return json.dumps({ "location": "San Francisco", "temperature": "72", "unit": unit }) elif "paris" in location.lower(): return json.dumps({ "location": "Paris", "temperature": "22", "unit": unit }) else: return json.dumps({"location": location, "temperature": "unknown"}) def run_conversation(): # Step 1: send the conversation and available functions to the model # messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}] messages = [{ "role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris ? We also need to know the current date." }] tools = [{ "type": "function", "function": { "name": "get_current_weather", "description": "Get the current weather in a given location", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "unit": { "type": "string", "enum": ["celsius", "fahrenheit"] }, }, "required": ["location"], }, }, }, { "type": "function", "function": { "name": "get_current_date_utc", "description": "Get the current UTC time", }, }] response = client.chat.completions.create( model=model, messages=messages, tools=tools, stream=stream, tool_choice="auto", # auto is default, but we'll be explicit ) response_message = "" tool_calls = None if stream: text_message = "" for chunk in response: if chunk.choices[0].finish_reason is not None: if chunk.choices[0].finish_reason == "tool_calls": tool_calls = chunk.choices[0].delta.tool_calls break if chunk.choices[0].delta.content is not None: text_message += chunk.choices[0].delta.content response_message = {"role": "assistant", "content": text_message} else: if not len(response.choices): return None response_message = response.choices[0].message # print(str(response_message)) tool_calls = response_message.tool_calls # Step 2: check if the model wanted to call a function if tool_calls: # Step 3: call the function # Note: the JSON response may not always be valid; be sure to handle errors available_functions = { "get_current_weather": get_current_weather, "get_current_date_utc": get_current_date_utc, } messages.append( response_message) # extend conversation with assistant's reply # Step 4: send the info for each function call and function response to the model for tool_call in tool_calls: function_name = tool_call.function.name function_to_call = available_functions[function_name] if function_name == "get_current_weather": function_args = json.loads(tool_call.function.arguments) function_response = function_to_call( location=function_args.get("location"), unit=function_args.get("unit"), ) else: function_response = function_to_call() messages.append({ "tool_call_id": tool_call.id, "role": "tool", "name": function_name, "content": function_response, }) # extend conversation with function response second_response = client.chat.completions.create( model=model, messages=messages, ) # get a new response from the model where it can see the function response for it_msg, msg in enumerate(messages): print("Message %i:\n %s\n" % (it_msg, str(msg))) return second_response result = run_conversation() print("Final response:\n%s" % result)