from typing import Any, Dict, List import torch from aphrodite.modeling.quantization_utils.base import QuantizationConfig class AWQConfig(QuantizationConfig): """Config class for AWQ. Reference: https://arxiv.org/abs/2306.00978 """ def __init__( self, weight_bits: int, group_size: int, zero_point: bool, ) -> None: self.weight_bits = weight_bits self.group_size = group_size self.zero_point = zero_point if self.weight_bits != 4: raise ValueError( "Currently, only 4-bit weight quantization is supported for " f"AWQ, but got {self.weight_bits} bits.") self.pack_factor = 32 // self.weight_bits def __repr__(self) -> str: return (f"AWQConfig(weight_bits={self.weight_bits}, " f"group_size={self.group_size}, " f"zero_point={self.zero_point})") @classmethod def get_name(cls) -> str: return "awq" @classmethod def get_supported_act_dtypes(cls) -> List[torch.dtype]: return [torch.half] @classmethod def get_min_capability(cls) -> int: # The AWQ kernel only supports Turing or newer GPUs. return 75 @classmethod def get_config_filenames(cls) -> List[str]: return [ "quant_config.json", # E.g., casperhansen/vicuna-7b-v1.5-awq "quantize_config.json", # E.g., abhinavkulkarni/mosaicml-mpt-7b-instruct-w4-g128-awq # pylint: disable=line-too-long ] @classmethod def from_config(cls, config: Dict[str, Any]) -> "AWQConfig": weight_bits = cls.get_from_keys(config, ["w_bit", "bits"]) group_size = cls.get_from_keys(config, ["q_group_size", "group_size"]) zero_point = cls.get_from_keys(config, ["zero_point"]) return cls(weight_bits, group_size, zero_point) @classmethod def get_packed_tensor_names(cls) -> List[str]: return ["qweight", "qzeros"] @classmethod def get_transposed_tensor_names(cls) -> List[str]: return ["qweight", "qzeros", "scales"] def get_row_tp_tensor_names(self) -> List[str]: return ["qweight", "qzeros", "scales"] def get_column_tp_tensor_names(self) -> List[str]: return ["qweight", "qzeros", "scales", "bias"]