from typing import Optional from transformers import AutoConfig, PretrainedConfig from transformers.models.auto.configuration_auto import CONFIG_MAPPING from aphrodite.transformers_utils.configs import (BaiChuanConfig, ChatGLMConfig, MPTConfig, QWenConfig, RWConfig) from aphrodite.common.gguf import GGUFReader _CONFIG_REGISTRY = { "baichuan": BaiChuanConfig, "chatglm": ChatGLMConfig, "mpt": MPTConfig, "qwen": QWenConfig, "RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct) "RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct) } def extract_gguf_config(checkpoint): result = GGUFReader(checkpoint) architecture = result.fields['general.architecture'] architecture = str(bytes(architecture.parts[architecture.data[0]]), encoding='utf-8') # Only support llama so far if architecture != "llama": raise RuntimeError(f"Unsupported architecture {architecture}, " "only llama is supported.") # write config vocab_size = len(result.fields['tokenizer.ggml.token_type'].data) context_length = int(result.fields['llama.context_length'].parts[-1]) n_layer = int(result.fields['llama.block_count'].parts[-1]) n_head = int(result.fields['llama.attention.head_count'].parts[-1]) n_local_heads = int( result.fields['llama.attention.head_count_kv'].parts[-1]) intermediate_size = int( result.fields['llama.feed_forward_length'].parts[-1]) norm_eps = float( result.fields['llama.attention.layer_norm_rms_epsilon'].parts[-1]) dim = int(result.fields['llama.embedding_length'].parts[-1]) arch = "MixtralForCausalLM" if 'llama.expert_count' in result.fields: arch = "MixtralForCausalLM" name = "mixtral" else: arch = "LlamaForCausalLM" name = "llama" model_config = { "architectures": [arch], "bos_token_id": 1, "eos_token_id": 2, "hidden_act": "silu", "hidden_size": dim, "intermediate_size": intermediate_size, "max_position_embeddings": context_length, "model_type": name, "num_attention_heads": n_head, "num_hidden_layers": n_layer, "num_key_value_heads": n_local_heads, "rms_norm_eps": norm_eps, "torch_dtype": "float16", "vocab_size": vocab_size } if 'llama.rope.freq_base' in result.fields: model_config['rope_theta'] = float( result.fields['llama.rope.freq_base'].parts[-1]) if 'llama.expert_count' in result.fields: model_config['num_local_experts'] = int( result.fields['llama.expert_count'].parts[-1]) model_config['num_experts_per_tok'] = int( result.fields['llama.expert_used_count'].parts[-1]) if name in _CONFIG_REGISTRY: config_class = _CONFIG_REGISTRY[name] else: config_class = CONFIG_MAPPING[name] hf_config = config_class.from_dict(model_config) return hf_config def get_config(model: str, trust_remote_code: bool, revision: Optional[str] = None, code_revision: Optional[str] = None) -> PretrainedConfig: if model.endswith("gguf"): return extract_gguf_config(model) try: config = AutoConfig.from_pretrained( model, trust_remote_code=trust_remote_code, revision=revision, code_revision=code_revision) except ValueError as e: if (not trust_remote_code and "requires you to execute the configuration file" in str(e)): err_msg = ( "Failed to load the model config. If the model is a custom " "model not yet available in the HuggingFace transformers " "library, consider setting `trust_remote_code=True` in LLM " "or using the `--trust-remote-code` flag in the CLI.") raise RuntimeError(err_msg) from e else: raise e if config.model_type in _CONFIG_REGISTRY: config_class = _CONFIG_REGISTRY[config.model_type] config = config_class.from_pretrained(model, revision=revision, code_revision=code_revision) return config