# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py # Copyright 2023 The PygmalionAI team. # Copyright 2024 The Qwen team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Qwen2 model compatible with HuggingFace weights.""" from typing import List, Optional, Tuple import torch from torch import nn from transformers import Qwen2Config from aphrodite.modeling.metadata import InputMetadata from aphrodite.modeling.layers.activation import SiluAndMul from aphrodite.modeling.layers.attention import PagedAttention from aphrodite.modeling.layers.layernorm import RMSNorm from aphrodite.modeling.layers.linear import ( LinearMethodBase, ColumnParallelLinear, MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear, ) from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.sampler import Sampler, QuantSampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( VocabParallelEmbedding, ParallelLMHead, ) from aphrodite.modeling.megatron.parallel_state import ( get_tensor_model_parallel_world_size, ) from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.modeling.hf_downloader import ( default_weight_loader, hf_model_weights_iterator, ) from aphrodite.common.sequence import SamplerOutput KVCache = Tuple[torch.Tensor, torch.Tensor] class Qwen2MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, linear_method: Optional[LinearMethodBase] = None, ) -> None: super().__init__() if (linear_method is not None and not linear_method.quant_config.merge_weight()): self.merge_weight = False self.gate_proj = ColumnParallelLinear( hidden_size, intermediate_size, bias=False, linear_method=linear_method, ) self.up_proj = ColumnParallelLinear( hidden_size, intermediate_size, bias=False, linear_method=linear_method, ) else: self.merge_weight = True self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, linear_method=linear_method, ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, linear_method=linear_method, ) if hidden_act != "silu": raise ValueError(f"Unsupported activation: {hidden_act}. " "Only silu is supported for now.") self.act_fn = SiluAndMul() def forward(self, x): if self.merge_weight: gate_up, _ = self.gate_up_proj(x) else: up, _ = self.up_proj(x) gate, _ = self.gate_proj(x) gate_up = torch.cat([gate, up], dim=-1) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class Qwen2Attention(nn.Module): def __init__( self, hidden_size: int, num_heads: int, num_kv_heads: int, max_position: int = 4096 * 32, rope_theta: float = 10000, use_sliding_window: bool = False, linear_method: Optional[LinearMethodBase] = None, sliding_window: Optional[int] = None, ) -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.sliding_window = sliding_window if use_sliding_window else None if (linear_method is not None and not linear_method.quant_config.merge_weight()): self.merge_weight = False self.q_proj = ColumnParallelLinear(hidden_size, self.q_size, bias=True, linear_method=linear_method) self.k_proj = ColumnParallelLinear( hidden_size, self.kv_size, bias=True, linear_method=linear_method, ) self.v_proj = ColumnParallelLinear( hidden_size, self.kv_size, bias=True, linear_method=linear_method, ) else: self.merge_weight = True self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=True, linear_method=linear_method, ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, linear_method=linear_method, ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position, base=self.rope_theta, ) self.attn = PagedAttention( self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, sliding_window=self.sliding_window, ) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: KVCache, input_metadata: InputMetadata, ) -> torch.Tensor: if self.merge_weight: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) else: q, _ = self.q_proj(hidden_states) k, _ = self.k_proj(hidden_states) v, _ = self.v_proj(hidden_states) q, k = self.rotary_emb(positions, q, k) k_cache, v_cache = kv_cache attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata) output, _ = self.o_proj(attn_output) return output class Qwen2DecoderLayer(nn.Module): def __init__( self, config: Qwen2Config, layer_idx: int, linear_method: Optional[LinearMethodBase] = None, ) -> None: super().__init__() self.hidden_size = config.hidden_size # Requires transformers > 4.32.0 rope_theta = getattr(config, "rope_theta", 1000000) use_sliding_window = (config.use_sliding_window and layer_idx < config.max_window_layers) self.self_attn = Qwen2Attention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, max_position=config.max_position_embeddings, num_kv_heads=config.num_key_value_heads, rope_theta=rope_theta, use_sliding_window=use_sliding_window, linear_method=linear_method, sliding_window=config.sliding_window, ) self.mlp = Qwen2MLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, linear_method=linear_method, ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: KVCache, input_metadata: InputMetadata, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, input_metadata=input_metadata, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm( hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual class Qwen2Model(nn.Module): def __init__( self, config: Qwen2Config, linear_method: Optional[LinearMethodBase] = None, ) -> None: super().__init__() self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, linear_method=linear_method, ) self.layers = nn.ModuleList([ Qwen2DecoderLayer(config, layer_idx, linear_method) for layer_idx in range(config.num_hidden_layers) ]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[KVCache], input_metadata: InputMetadata, ) -> torch.Tensor: hidden_states = self.embed_tokens(input_ids) residual = None for i in range(len(self.layers)): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, kv_caches[i], input_metadata, residual, ) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states class Qwen2ForCausalLM(nn.Module): def __init__( self, config: Qwen2Config, linear_method: Optional[LinearMethodBase] = None, ) -> None: super().__init__() self.config = config self.linear_method = linear_method self.model = Qwen2Model(config, linear_method) self.lm_head = ParallelLMHead( config.vocab_size, config.hidden_size, linear_method=linear_method, ) self.sampler = Sampler(config.vocab_size) self.quant_sampler = QuantSampler(config.vocab_size) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[KVCache], input_metadata: InputMetadata, ) -> torch.Tensor: hidden_states = self.model(input_ids, positions, kv_caches, input_metadata) return hidden_states def sample( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: if (self.linear_method is not None and not self.linear_method.quant_config.merge_weight()): next_tokens = self.quant_sampler(self.lm_head(hidden_states), sampling_metadata) else: next_tokens = self.sampler(self.lm_head.weight, hidden_states, sampling_metadata) return next_tokens def load_weights( self, model_name_or_path: str, cache_dir: Optional[str] = None, load_format: str = "auto", revision: Optional[str] = None, ): stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] if (self.linear_method is not None and not self.linear_method.quant_config.merge_weight()): stacked_params_mapping = [] params_dict = dict(self.named_parameters()) for name, loaded_weight in hf_model_weights_iterator( model_name_or_path, cache_dir, load_format, revision): if "rotary_emb.inv_freq" in name: continue for param_name, weight_name, shard_id in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)