"""Sampling parameters for text generation.""" from enum import IntEnum from functools import cached_property from typing import Callable, List, Optional, Union import torch _SAMPLING_EPS = 1e-5 class SamplingType(IntEnum): GREEDY = 0 RANDOM = 1 RANDOM_SEED = 2 BEAM = 3 LogitsProcessorFunc = Callable[[torch.Tensor, List[List[int]]], None] """LogitsProcessorFunc takes a logits tensor and corresponding lists of previously generated output tokens, and modifies the logits tensor.""" class SamplingParams: """Sampling parameters for text generation. Overall, we follow the sampling parameters from the OpenAI text completion API (https://platform.openai.com/docs/api-reference/completions/create). In addition, we support multiple additional samplers which are not supported by OpenAI. Args: n: Number of output sequences to return for the given prompt. best_of: Number of output sequences that are generated from the prompt. From these `best_of` sequences, the top `n` sequences are returned. `best_of` must be greater than or equal to `n`. This is treated as the beam width when `use_beam_search` is True. By default, `best_of` is set to `n`. presence_penalty: Float that penalizes new tokens based on whether they appear in the generated text so far. Values > 0 encourage the model to use new tokens, while values < 0 encourage the model to repeat tokens. frequency_penalty: Float that penalizes new tokens based on their frequency in the generated text so far. Values > 0 encourage the model to use new tokens, while values < 0 encourage the model to repeat tokens. repetition_penalty: Float that penalizes new tokens based on their frequency in the generated text so far. freq_pen is applied additively while rep_pen is applied multiplicatively. Must be in [1, inf). Set to 1 to disable the effect. temperature: Float that controls the randomness of the sampling. Lower values make the model more deterministic, while higher values make the model more random. Zero means greedy sampling. top_p: Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to 1 to consider all tokens. top_k: Integer that controls the number of top tokens to consider. Set to -1 to consider all tokens. top_a: Float that controls the cutoff for Top-A sampling. Exact cutoff is top_a*max_prob**2. Must be in [0,inf], 0 to disable. min_p: Float that controls the cutoff for min-p sampling. Exact cutoff is min_p*max_prob. Must be in [0,1], 0 to disable. tfs: Float that controls the cumulative approximate curvature of the distribution to retain for Tail Free Sampling. Must be in (0, 1]. Set to 1 to disable eta_cutoff: Float that controls the cutoff threshold for Eta sampling (a form of entropy adaptive truncation sampling) threshold is computed as min(eta, sqrt(eta)*entropy(probs)). Specified in units of 1e-4. Set to 0 to disable epsilon_cutoff: Float that controls the cutoff threshold for Epsilon sampling (simple probability threshold truncation). Specified in units of 1e-4. Set to 0 to disable. typical_p: Float that controls the cumulative probability of tokens closest in surprise to the expected surprise to consider. Must be in (0, 1]. Set to 1 to disable. typical_p_sigma: Used to scale the maximum threshold for positive deviations in typical_p. Range in [0, inf). Set to 0 to disable. mirostat_mode: Can either be 0 (disabled) or 2 (Mirostat v2). mirostat_tau: Target "surprisal" that mirostat works towards. Range [0, inf). mirostat_eta: Rate at which mirostat updates its internal surprisal value. Range [0, inf). dynatemp_min: Minimum temperature for dynatemp sampling. Range [0, inf). dynatemp_max: Maximum temperature for dynatemp sampling. Range [0, inf). dynatemp_exponent: Exponent for dynatemp sampling. Range [0, inf). smoothing_factor: Smoothing factor for Quadratic Sampling. smoothing_curve: Smoothing curve for Quadratic (Cubic) Sampling. seed: Random seed to use for the generation. use_beam_search: Whether to use beam search instead of sampling. length_penalty: Float that penalizes sequences based on their length. Used in beam search. early_stopping: Controls the stopping condition for beam search. It accepts the following values: `True`, where the generation stops as soon as there are `best_of` complete candidates; `False`, where an heuristic is applied and the generation stops when is it very unlikely to find better candidates; `"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical beam search algorithm). stop: List of strings that stop the generation when they are generated. The returned output will not contain the stop strings. stop_token_ids: List of tokens that stop the generation when they are generated. The returned output will contain the stop tokens unless the stop tokens are special tokens. include_stop_str_in_output: Whether to include the stop strings in output text. Defaults to False. ignore_eos: Whether to ignore the EOS token and continue generating tokens after the EOS token is generated. max_tokens: Maximum number of tokens to generate per output sequence. logprobs: Number of log probabilities to return per output token. Note that the implementation follows the OpenAI API: The return result includes the log probabilities on the `logprobs` most likely tokens, as well the chosen tokens. The API will always return the log probability of the sampled token, so there may be up to `logprobs+1` elements in the response. prompt_logprobs: Number of log probabilities to return per prompt token. custom_token_bans: List of token IDs to ban from generating skip_special_tokens: Whether to skip special tokens in the output. defaults to true. spaces_between_special_tokens: Whether to add spaces between special tokens in the output. Defaults to True. logits_processors: List of LogitsProcessors to change the probability of token prediction at runtime. """ def __init__( self, n: int = 1, best_of: Optional[int] = None, presence_penalty: float = 0.0, frequency_penalty: float = 0.0, repetition_penalty: float = 1.0, temperature: float = 1.0, top_p: float = 1.0, top_k: int = -1, top_a: float = 0.0, min_p: float = 0.0, tfs: float = 1.0, eta_cutoff: float = 0.0, epsilon_cutoff: float = 0.0, typical_p: float = 1.0, typical_p_sigma: float = 0.0, mirostat_mode: int = 0, mirostat_tau: float = 0, mirostat_eta: float = 0, dynatemp_min: float = 0, dynatemp_max: float = 0, dynatemp_exponent: float = 1, smoothing_factor: float = 0.0, smoothing_curve: float = 1.0, seed: Optional[int] = None, use_beam_search: bool = False, length_penalty: float = 1.0, early_stopping: Union[bool, str] = False, stop: Union[None, str, List[str]] = None, stop_token_ids: Optional[List[int]] = None, include_stop_str_in_output: bool = False, ignore_eos: bool = False, max_tokens: Optional[int] = 16, logprobs: Optional[int] = None, prompt_logprobs: Optional[int] = None, custom_token_bans: Optional[List[int]] = None, skip_special_tokens: bool = True, spaces_between_special_tokens: bool = True, logits_processors: Optional[List[LogitsProcessorFunc]] = None, ) -> None: self.n = n self.best_of = best_of if best_of is not None else n self.presence_penalty = presence_penalty self.frequency_penalty = frequency_penalty self.repetition_penalty = repetition_penalty self.temperature = temperature self.top_p = top_p self.top_k = top_k self.top_a = top_a self.min_p = min_p self.tfs = tfs self.eta_cutoff = eta_cutoff self.epsilon_cutoff = epsilon_cutoff self.typical_p = typical_p self.typical_p_sigma = typical_p_sigma self.mirostat_mode = mirostat_mode self.mirostat_tau = mirostat_tau self.mirostat_eta = mirostat_eta self.dynatemp_min = dynatemp_min self.dynatemp_max = dynatemp_max self.dynatemp_exponent = dynatemp_exponent self.smoothing_factor = smoothing_factor self.smoothing_curve = smoothing_curve self.seed = seed self.use_beam_search = use_beam_search self.length_penalty = length_penalty self.early_stopping = early_stopping if stop is None: self.stop = [] elif isinstance(stop, str): self.stop = [stop] else: self.stop = list(stop) self.stop_token_ids = stop_token_ids or [] self.ignore_eos = ignore_eos self.max_tokens = max_tokens self.logprobs = logprobs self.prompt_logprobs = prompt_logprobs self.custom_token_bans = custom_token_bans or [] self.skip_special_tokens = skip_special_tokens self.spaces_between_special_tokens = spaces_between_special_tokens self.logits_processors = logits_processors or [] self.include_stop_str_in_output = include_stop_str_in_output self.default_values = { "n": 1, "best_of": 1, "presence_penalty": 0.0, "frequency_penalty": 0.0, "repetition_penalty": 1.0, "temperature": 1.0, "top_p": 1.0, "top_k": -1, "top_a": 0.0, "min_p": 0.0, "tfs": 1.0, "eta_cutoff": 0.0, "epsilon_cutoff": 0.0, "typical_p": 1.0, "typical_p_sigma": 0.0, "mirostat_mode": 0, "mirostat_tau": 0, "mirostat_eta": 0, "dynatemp_min": 0, "dynatemp_max": 0, "dynatemp_exponent": 1, "smoothing_factor": 0.0, "smoothing_curve": 1.0, "seed": None, "use_beam_search": False, "length_penalty": 1.0, "early_stopping": False, "stop": [], "stop_token_ids": [], "ignore_eos": False, "max_tokens": 16, "logprobs": None, "prompt_logprobs": None, "custom_token_bans": [], "skip_special_tokens": True, "spaces_between_special_tokens": True, "include_stop_str_in_output": False } self._verify_args() if self.use_beam_search: self._verify_beam_search() else: self._verify_non_beam_search() if self.temperature < _SAMPLING_EPS: # Zero temperature means greedy sampling. self.top_p = 1.0 self.top_k = -1 self.min_p = 0.0 self.top_a = 0.0 self._verify_greedy_sampling() def _verify_args(self) -> None: if self.n < 1: raise ValueError(f"n must be at least 1, got {self.n}.") if self.best_of < self.n: raise ValueError(f"best_of must be greater than or equal to n, " f"got n={self.n} and best_of={self.best_of}.") if not -2.0 <= self.presence_penalty <= 2.0: raise ValueError("presence_penalty must be in [-2, 2], got " f"{self.presence_penalty}.") if not -2.0 <= self.frequency_penalty <= 2.0: raise ValueError("frequency_penalty must be in [-2, 2], got " f"{self.frequency_penalty}.") if self.repetition_penalty < 1.0: raise ValueError("repetition_penalty must be in [1, inf), got " f"{self.repetition_penalty}.") if self.temperature < 0.0: raise ValueError( f"temperature must be non-negative, got {self.temperature}.") if not 0.0 < self.top_p <= 1.0: raise ValueError(f"top_p must be in (0, 1], got {self.top_p}.") if self.top_k < -1 or self.top_k == 0: raise ValueError(f"top_k must be -1 (disable), or at least 1, " f"got {self.top_k}.") if self.top_a < 0: raise ValueError(f"top_a must be non negative, got {self.top_a}.") if not 0.0 <= self.min_p <= 1.0: raise ValueError(f"min_p must be in [0, 1], got {self.min_p}.") if not 0.0 < self.tfs <= 1.0: raise ValueError(f"tfs must be in (0, 1], got {self.tfs}.") if self.epsilon_cutoff < 0.0 or self.epsilon_cutoff > 1000.0: raise ValueError("epsilon_cutoff must be in [0, 1000], got " f"{self.epsilon_cutoff}.") # pylint: disable=unneeded-not if not self.eta_cutoff >= 0: raise ValueError( f"eta_cutoff must be non negative, got {self.eta_cutoff}.") if not 0.0 <= self.typical_p <= 1.0: raise ValueError( f"typical_p must be in (0, 1], got {self.typical_p}.") if not self.typical_p_sigma >= 0: raise ValueError(f"typical_p_sigma must be non negative, got " f"{self.typical_p_sigma}.") if not self.dynatemp_min >= 0: raise ValueError( f"dynatemp_min must be non negative, got {self.dynatemp_min}.") if not self.dynatemp_max >= 0: raise ValueError( f"dynatemp_max must be non negative, got {self.dynatemp_max}.") if not self.dynatemp_exponent >= 0: raise ValueError(f"dynatemp_exponent must be non negative, got " f"{self.dynatemp_exponent}.") if not self.smoothing_factor >= 0: raise ValueError(f"smoothing_factor must be non negative, got " f"{self.smoothing_factor}.") if not self.smoothing_curve >= 1.0: raise ValueError(f"smoothing_curve must larger than 1, got " f"{self.smoothing_curve}.") if self.mirostat_mode: if not self.mirostat_mode == 2: raise ValueError( "Only Mirostat v2 (2) and disabled (0) supported, " f"got {self.mirostat_mode}") if not self.mirostat_eta >= 0: raise ValueError( f"mirostat_eta must be positive, got {self.mirostat_eta}") if not self.mirostat_tau >= 0: raise ValueError( f"mirostat_tau must be positive, got {self.mirostat_tau}") if self.max_tokens is not None and self.max_tokens < 1: raise ValueError( f"max_tokens must be at least 1, got {self.max_tokens}.") if self.logprobs is not None and self.logprobs < 0: raise ValueError( f"logprobs must be non-negative, got {self.logprobs}.") if self.prompt_logprobs is not None and self.prompt_logprobs < 0: raise ValueError("prompt_logprobs must be non-negative, got " f"{self.prompt_logprobs}.") def _verify_beam_search(self) -> None: if self.best_of == 1: raise ValueError("best_of must be greater than 1 when using beam " f"search. Got {self.best_of}.") if self.temperature > _SAMPLING_EPS: raise ValueError("temperature must be 0 when using beam search.") if self.top_p < 1.0 - _SAMPLING_EPS: raise ValueError("top_p must be 1 when using beam search.") if self.top_k != -1: raise ValueError("top_k must be -1 when using beam search.") if self.early_stopping not in [True, False, "never"]: raise ValueError( f"early_stopping must be True, False, or 'never', " f"got {self.early_stopping}.") def _verify_non_beam_search(self) -> None: if self.early_stopping is not False: raise ValueError("early_stopping is not effective and must be " "False when not using beam search.") if (self.length_penalty < 1.0 - _SAMPLING_EPS or self.length_penalty > 1.0 + _SAMPLING_EPS): raise ValueError( "length_penalty is not effective and must be the " "default value of 1.0 when not using beam search.") def _verify_greedy_sampling(self) -> None: if self.best_of > 1: raise ValueError("best_of must be 1 when using greedy sampling." f"Got {self.best_of}.") if self.top_p < 1.0 - _SAMPLING_EPS: raise ValueError("top_p must be 1 when using greedy sampling.") if self.top_k != -1: raise ValueError("top_k must be -1 when using greedy sampling.") @cached_property def sampling_type(self) -> SamplingType: if self.use_beam_search: return SamplingType.BEAM if self.temperature < _SAMPLING_EPS: return SamplingType.GREEDY if self.seed is not None: return SamplingType.RANDOM_SEED return SamplingType.RANDOM def __repr__(self) -> str: repr_str = "SamplingParams(" for param, default_value in self.default_values.items(): current_value = getattr(self, param) if current_value != default_value: repr_str += f"{param}={current_value}, " repr_str = repr_str.rstrip(', ') + ")" return repr_str