import io import os import re import subprocess from typing import List, Set import warnings from packaging.version import parse, Version import setuptools import torch from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME ROOT_DIR = os.path.dirname(__file__) # Supported NVIDIA GPU architectures. SUPPORTED_ARCHS = {"6.0", "6.1", "6.5", "7.0", "7.5", "8.0", "8.6", "8.9", "9.0"} # Compiler flags. CXX_FLAGS = ["-g", "-O2", "-std=c++17"] # TODO: Should we use -O3? NVCC_FLAGS = ["-O2", "-std=c++17"] ABI = 1 if torch._C._GLIBCXX_USE_CXX11_ABI else 0 CXX_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"] NVCC_FLAGS += [f"-D_GLIBCXX_USE_CXX11_ABI={ABI}"] if CUDA_HOME is None: raise RuntimeError( "Cannot find CUDA_HOME. CUDA must be available to build the package.") def get_nvcc_cuda_version(cuda_dir: str) -> Version: """Get the CUDA version from nvcc. Adapted from https://github.com/NVIDIA/apex/blob/8b7a1ff183741dd8f9b87e7bafd04cfde99cea28/setup.py """ nvcc_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True) output = nvcc_output.split() release_idx = output.index("release") + 1 nvcc_cuda_version = parse(output[release_idx].split(",")[0]) return nvcc_cuda_version def get_torch_arch_list() -> Set[str]: # TORCH_CUDA_ARCH_LIST can have one or more architectures, # e.g. "8.0" or "7.5,8.0,8.6+PTX". Here, the "8.6+PTX" option asks the # compiler to additionally include PTX code that can be runtime-compiled # and executed on the 8.6 or newer architectures. While the PTX code will # not give the best performance on the newer architectures, it provides # forward compatibility. env_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None) if env_arch_list is None: return set() # List are separated by ; or space. torch_arch_list = set(env_arch_list.replace(" ", ";").split(";")) if not torch_arch_list: return set() # Filter out the invalid architectures and print a warning. valid_archs = SUPPORTED_ARCHS.union({s + "+PTX" for s in SUPPORTED_ARCHS}) arch_list = torch_arch_list.intersection(valid_archs) # If none of the specified architectures are valid, raise an error. if not arch_list: raise RuntimeError( "None of the CUDA architectures in `TORCH_CUDA_ARCH_LIST` env " f"variable ({env_arch_list}) is supported. " f"Supported CUDA architectures are: {valid_archs}.") invalid_arch_list = torch_arch_list - valid_archs if invalid_arch_list: warnings.warn( f"Unsupported CUDA architectures ({invalid_arch_list}) are " "excluded from the `TORCH_CUDA_ARCH_LIST` env variable " f"({env_arch_list}). Supported CUDA architectures are: " f"{valid_archs}.") return arch_list # First, check the TORCH_CUDA_ARCH_LIST environment variable. compute_capabilities = get_torch_arch_list() if not compute_capabilities: # If TORCH_CUDA_ARCH_LIST is not defined or empty, target all available # GPUs on the current machine. device_count = torch.cuda.device_count() for i in range(device_count): major, minor = torch.cuda.get_device_capability(i) if major < 6: raise RuntimeError( "GPUs with compute capability below 6.0 are not supported.") compute_capabilities.add(f"{major}.{minor}") nvcc_cuda_version = get_nvcc_cuda_version(CUDA_HOME) if not compute_capabilities: # If no GPU is specified nor available, add all supported architectures # based on the NVCC CUDA version. compute_capabilities = SUPPORTED_ARCHS.copy() if nvcc_cuda_version < Version("11.1"): compute_capabilities.remove("8.6") if nvcc_cuda_version < Version("11.8"): compute_capabilities.remove("8.9") compute_capabilities.remove("9.0") # Validate the NVCC CUDA version. if nvcc_cuda_version < Version("11.0"): raise RuntimeError("CUDA 11.0 or higher is required to build the package.") if nvcc_cuda_version < Version("11.1"): if any(cc.startswith("8.6") for cc in compute_capabilities): raise RuntimeError( "CUDA 11.1 or higher is required for compute capability 8.6.") if nvcc_cuda_version < Version("11.8"): if any(cc.startswith("8.9") for cc in compute_capabilities): # CUDA 11.8 is required to generate the code targeting compute capability 8.9. # However, GPUs with compute capability 8.9 can also run the code generated by # the previous versions of CUDA 11 and targeting compute capability 8.0. # Therefore, if CUDA 11.8 is not available, we target compute capability 8.0 # instead of 8.9. warnings.warn( "CUDA 11.8 or higher is required for compute capability 8.9. " "Targeting compute capability 8.0 instead.") compute_capabilities = set(cc for cc in compute_capabilities if not cc.startswith("8.9")) compute_capabilities.add("8.0+PTX") if any(cc.startswith("9.0") for cc in compute_capabilities): raise RuntimeError( "CUDA 11.8 or higher is required for compute capability 9.0.") # Add target compute capabilities to NVCC flags. for capability in compute_capabilities: num = capability[0] + capability[2] NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=sm_{num}"] if capability.endswith("+PTX"): NVCC_FLAGS += ["-gencode", f"arch=compute_{num},code=compute_{num}"] # Use NVCC threads to parallelize the build. if nvcc_cuda_version >= Version("11.2"): num_threads = min(os.cpu_count(), 8) NVCC_FLAGS += ["--threads", str(num_threads)] ext_modules = [] # Cache operations. cache_extension = CUDAExtension( name="aphrodite.cache_ops", sources=["kernels/cache.cpp", "kernels/cache_kernels.cu"], extra_compile_args={ "cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS, }, ) ext_modules.append(cache_extension) # Attention kernels. attention_extension = CUDAExtension( name="aphrodite.attention_ops", sources=["kernels/attention.cpp", "kernels/attention/attention_kernels.cu"], extra_compile_args={ "cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS, }, ) ext_modules.append(attention_extension) # Positional encoding kernels. positional_encoding_extension = CUDAExtension( name="aphrodite.pos_encoding_ops", sources=["kernels/pos_encoding.cpp", "kernels/pos_encoding_kernels.cu"], extra_compile_args={ "cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS, }, ) ext_modules.append(positional_encoding_extension) # Layer normalization kernels. layernorm_extension = CUDAExtension( name="aphrodite.layernorm_ops", sources=["kernels/layernorm.cpp", "kernels/layernorm_kernels.cu"], extra_compile_args={ "cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS, }, ) ext_modules.append(layernorm_extension) # Activation kernels. activation_extension = CUDAExtension( name="aphrodite.activation_ops", sources=["kernels/activation.cpp", "kernels/activation_kernels.cu"], extra_compile_args={ "cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS, }, ) ext_modules.append(activation_extension) # Quantization kernels. quantization_extension = CUDAExtension( name="aphrodite.quantization_ops", sources=[ "kernels/quantization.cpp", "kernels/quantization/awq/gemm_kernels.cu", "kernels/quantization/gptq/exllama_ext.cpp", "kernels/quantization/gptq/cuda_buffers.cu", "kernels/quantization/gptq/cuda_func/column_remap.cu", "kernels/quantization/gptq/cuda_func/q4_matmul.cu", "kernels/quantization/gptq/cuda_func/q4_matrix.cu", "kernels/quantization/gptq/alt_matmul_kernel.cu", "kernels/quantization/gptq/alt_matmul.cpp" ], extra_compile_args={ "cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS, }, ) ext_modules.append(quantization_extension) # Misc. CUDA utils. cuda_utils_extension = CUDAExtension( name="aphrodite.cuda_utils", sources=["kernels/cuda_utils.cpp", "kernels/cuda_utils_kernels.cu"], extra_compile_args={ "cxx": CXX_FLAGS, "nvcc": NVCC_FLAGS, }, ) ext_modules.append(cuda_utils_extension) def get_path(*filepath) -> str: return os.path.join(ROOT_DIR, *filepath) def find_version(filepath: str): """Extract version information from the given filepath. Adapted from https://github.com/ray-project/ray/blob/0b190ee1160eeca9796bc091e07eaebf4c85b511/python/setup.py """ with open(filepath) as fp: version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", fp.read(), re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") def read_readme() -> str: """Read the README file.""" return io.open(get_path("README.md"), "r", encoding="utf-8").read() def get_requirements() -> List[str]: """Get Python package dependencies from requirements.txt.""" with open(get_path("requirements.txt")) as f: requirements = f.read().strip().split("\n") return requirements setuptools.setup( name="aphrodite-engine", version=find_version(get_path("aphrodite", "__init__.py")), author="PygmalionAI", license="AGPL 3.0", description="The inference engine for PygmalionAI models", long_description=read_readme(), long_description_content_type="text/markdown", url="https://github.com/PygmalionAI/aphrodite-engine", project_urls={ "Homepage": "https://pygmalion.chat", "Documentation": "https://docs.pygmalion.chat", "GitHub": "https://github.com/PygmalionAI", "Huggingface": "https://huggingface.co/PygmalionAI", }, classifiers=[ "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Programming Language :: Python :: 3.11", "License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], packages=setuptools.find_packages( exclude=("kernels","examples", "tests")), python_requires=">=3.8", install_requires=get_requirements(), ext_modules=ext_modules, cmdclass={"build_ext": BuildExtension}, )