/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights *reserved. SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, *this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE *ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE *LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR *CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF *SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS *INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN *CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) *ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE *POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ // // This file is a modified excerpt of // include/cutlass/epilogue/fusion/visitor_load.hpp from // https://github.com/NVIDIA/cutlass v3.5.0 // It has been modified to support either // row/column or scalar broadcasting where the tensor being loaded from is // always passed in via a device pointer. This lets one compiled kernel handle // all cases of per-tensor or per-channel/per-token quantization. // // This interface also allows the scales to be passed in as tensors that // consistently reside on the device, which avoids an issue with a previous // implementation where scalars needed to be on the CPU since they // were passed in via float values. This created a potential performance hazard // if scales were initially on the device, and caused torch.compile graph // breaks when moving scales to the CPU. // #pragma once // Turn off clang-format for the entire file to keep it close to upstream // clang-format off #include "cutlass/epilogue/threadblock/fusion/visitor_2x.hpp" #include "cute/tensor.hpp" namespace cutlass::epilogue::threadblock { using namespace cute; using namespace detail; template< class ThreadMap, class Element, class StrideMNL > struct VisitorRowOrScalarBroadcast { // This struct has been modified to have a bool indicating that ptr_row is a // scalar that must be broadcast. struct Arguments { Element const* ptr_row = nullptr; bool row_broadcast = true; StrideMNL dRow = {}; }; using Params = Arguments; template static constexpr Params to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) { return args; } template static size_t get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) { return 0; } struct SharedStorage {}; // Global load type static int constexpr vec_bits = ThreadMap::kElementsPerAccess * sizeof_bits::value; using VecType = uint_bit_t; static int constexpr VecLength = sizeof(VecType) / sizeof(Element); CUTLASS_HOST_DEVICE VisitorRowOrScalarBroadcast() { } CUTLASS_HOST_DEVICE VisitorRowOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage) : params_ptr(¶ms) { } Params const* params_ptr; template struct Callbacks : EmptyCallbacks { CUTLASS_DEVICE Callbacks( GTensor&& tC_gRow, RTensor&& tC_rRow, CTensor&& tC_cRow, ProblemShape problem_shape, Params const* params_ptr ): tC_gRow(cute::forward(tC_gRow)), tC_rRow(cute::forward(tC_rRow)), tC_cRow(cute::forward(tC_cRow)), n(get<1>(problem_shape)), params_ptr(params_ptr) { } GTensor tC_gRow; RTensor tC_rRow; CTensor tC_cRow; Params const* params_ptr; int n; // This function is modified from VisitorRowBroadcast CUTLASS_DEVICE void begin_epilogue() { clear(tC_rRow); auto src_v = filter(tC_gRow); auto coord_v = filter(tC_cRow); auto dst_v = filter(tC_rRow); if (params_ptr->row_broadcast) { // In this case we are loading from a row vector and broadcasting CUTLASS_PRAGMA_UNROLL for (int i = 0; i < size(src_v); ++i) { bool guard = get<1>(coord_v(i)) < n; cutlass::arch::global_load( dst_v(i), (void const*)&src_v(i), guard); } } else { // In this case we are loading from a scalar and broadcasting VecType filled_vec; CUTLASS_PRAGMA_UNROLL for (int i = 0; i < VecLength; i++) { reinterpret_cast(&filled_vec)[i] = *(params_ptr->ptr_row); } CUTLASS_PRAGMA_UNROLL for (int i = 0; i < size(src_v); ++i) { if (get<1>(coord_v(i)) < n) { dst_v(i) = filled_vec; } } } } template CUTLASS_DEVICE auto // returns an Array visit(int iter_idx, int row_idx, int column_idx, int frg_idx, Array const& frg_acc) { Tensor rRow_frg = recast>(coalesce(tC_rRow)); return rRow_frg(column_idx); } }; template CUTLASS_DEVICE auto get_callbacks( gemm::GemmCoord threadblock_tile_offset, int thread_idx, ProblemShape problem_shape ) { Tensor mRow = make_tensor( make_gmem_ptr(params_ptr->ptr_row), problem_shape, params_ptr->dRow); // VECTOR, FRAGMENT_COLUMN Tensor tC_gRow = recast( ThreadMap::partition(mRow, thread_idx, threadblock_tile_offset) )(_,_,_0{},_0{},_0{},_0{}); Tensor tC_rRow = make_tensor_like(tC_gRow); // Generate the pred tensor Tensor cRow = make_identity_tensor(mRow.shape()); Tensor tC_cRow = outer_partition( ThreadMap::partition(cRow, thread_idx, threadblock_tile_offset)(_,_,_0{},_0{},_0{},_0{}), Shape>{}, (_0{}) ); return Callbacks< decltype(tC_gRow), decltype(tC_rRow), decltype(tC_cRow), ProblemShape>( cute::move(tC_gRow), cute::move(tC_rRow), cute::move(tC_cRow), problem_shape, params_ptr ); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // Column vector broadcast template< class ThreadMap, class Element, class StrideMNL = Stride<_1,_0,_0> > struct VisitorColOrScalarBroadcast { // This struct has been modified to have a bool indicating that ptr_col is a // scalar that must be broadcast. struct Arguments { Element const* ptr_col = nullptr; bool col_broadcast = true; StrideMNL dCol = {}; }; using Params = Arguments; template static constexpr Params to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) { return args; } template static size_t get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) { return 0; } struct SharedStorage { }; CUTLASS_HOST_DEVICE VisitorColOrScalarBroadcast() { } CUTLASS_HOST_DEVICE VisitorColOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage) : params_ptr(¶ms) { } Params const* params_ptr; template struct Callbacks : EmptyCallbacks { CUTLASS_DEVICE Callbacks( GTensor&& tC_gCol, RTensor&& tC_rCol, CTensor&& tC_cCol, ProblemShape problem_shape, Params const* params_ptr ): tC_gCol(cute::forward(tC_gCol)), tC_rCol(cute::forward(tC_rCol)), tC_cCol(cute::forward(tC_cCol)), m(get<0>(problem_shape)), params_ptr(params_ptr) { } GTensor tC_gCol; RTensor tC_rCol; CTensor tC_cCol; Params const* params_ptr; int m; // This function is modified from VisitorColBroadcast CUTLASS_DEVICE void begin_epilogue() { clear(tC_rCol); Tensor pred = make_tensor(shape(tC_gCol)); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < size(pred); ++i) { pred(i) = get<0>(tC_cCol(i)) < m; } if (params_ptr->col_broadcast) { // In this case we are loading from a column vector and broadcasting copy_if(pred, tC_gCol, tC_rCol); } else { // In this case we are loading from a scalar and broadcasting auto dst_v = filter(tC_rCol); CUTLASS_PRAGMA_UNROLL for (int i = 0; i < size(dst_v); ++i) { if (pred(i)) { dst_v(i) = *(params_ptr->ptr_col); } } } } template CUTLASS_DEVICE auto // returns an Array visit(int iter_idx, int row_idx, int column_idx, int frg_idx, Array const& frg_acc) { Array frg_col; frg_col.fill(tC_rCol(row_idx,iter_idx)); return frg_col; } }; template CUTLASS_DEVICE auto get_callbacks( gemm::GemmCoord threadblock_tile_offset, int thread_idx, ProblemShape problem_shape ) { Tensor mCol = make_tensor( make_gmem_ptr(params_ptr->ptr_col), problem_shape, params_ptr->dCol); // VECTOR, FRAGMENT_COLUMN, FRAGMENT_ROW, ITERATION_ROW, ITERATION_GROUP, ITERATION_CLUSTER Tensor tC_gCol = group_modes<1,4>( ThreadMap::partition(mCol, thread_idx, threadblock_tile_offset)(_0{},_0{},_,_,_,_)); Tensor tC_rCol = make_tensor_like(tC_gCol); // Generate the pred tensor Tensor cCol = make_identity_tensor(mCol.shape()); Tensor tC_cCol = group_modes<1,4>( ThreadMap::partition(cCol, thread_idx, threadblock_tile_offset)(_0{},_0{},_,_,_,_)); return Callbacks< decltype(tC_gCol), decltype(tC_rCol), decltype(tC_cCol), ProblemShape>( cute::move(tC_gCol), cute::move(tC_rCol), cute::move(tC_cCol), problem_shape, params_ptr ); } }; }