"""Compare the outputs of HF and vLLM for Mistral models using greedy sampling. Run `pytest tests/models/test_llama_embedding.py`. """ import pytest import torch import torch.nn.functional as F MODELS = [ "intfloat/e5-mistral-7b-instruct", ] def compare_embeddings(embeddings1, embeddings2): similarities = [ F.cosine_similarity(torch.tensor(e1), torch.tensor(e2), dim=0) for e1, e2 in zip(embeddings1, embeddings2) ] return similarities @pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("dtype", ["half"]) def test_models( hf_runner, aphrodite_runner, example_prompts, model: str, dtype: str, ) -> None: with hf_runner(model, dtype=dtype, is_embedding_model=True) as hf_model: hf_outputs = hf_model.encode(example_prompts) with aphrodite_runner(model, dtype=dtype) as aphrodite_model: aphrodite_outputs = aphrodite_model.encode(example_prompts) similarities = compare_embeddings(hf_outputs, aphrodite_outputs) all_similarities = torch.stack(similarities) tolerance = 1e-2 assert torch.all((all_similarities <= 1.0 + tolerance) & (all_similarities >= 1.0 - tolerance) ), f"Not all values are within {tolerance} of 1.0"