import multiprocessing import os import pytest import torch from aphrodite.distributed.device_communicators.pynccl import ( NCCLCommunicator, ncclGetUniqueId) def distributed_run(fn, world_size): number_of_processes = world_size processes = [] for i in range(number_of_processes): env = os.environ.copy() env['RANK'] = str(i) env['LOCAL_RANK'] = str(i) env['WORLD_SIZE'] = str(number_of_processes) env['LOCAL_WORLD_SIZE'] = str(number_of_processes) env['MASTER_ADDR'] = 'localhost' env['MASTER_PORT'] = '12345' p = multiprocessing.Process(target=fn, args=(env, )) processes.append(p) p.start() for p in processes: p.join() def update_env(fn): # `multiprocessing.Process` cannot accept environment variables directly # so we need to pass the environment variables as arguments # and update the environment variables in the function def wrapper(env): import os os.environ.update(env) fn() return wrapper @update_env def worker_fn(): comm = NCCLCommunicator() tensor = torch.ones(16, 1024, 1024, dtype=torch.float32).cuda(comm.rank) comm.all_reduce(tensor) result = tensor.mean().cpu().item() assert result == comm.world_size @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Need at least 2 GPUs to run the test.") def test_pynccl(): distributed_run(worker_fn, 2) @update_env def worker_fn_with_cudagraph(): with torch.no_grad(): graph = torch.cuda.CUDAGraph() comm = NCCLCommunicator() # run something in the default stream to initialize torch engine a = torch.ones((4, 4), device=f'cuda:{comm.rank}') torch.cuda.synchronize() with torch.cuda.graph(graph, stream=comm.stream): # operation during the graph capture is recorded but not executed # see https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#creating-a-graph-using-stream-capture # noqa comm.all_reduce(a) comm.stream.synchronize() assert a.mean().cpu().item() == comm.world_size**0 graph.replay() comm.stream.synchronize() assert a.mean().cpu().item() == comm.world_size**1 @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Need at least 2 GPUs to run the test.") def test_pynccl_with_cudagraph(): distributed_run(worker_fn_with_cudagraph, 2) def test_ncclGetUniqueId(): unique_id = ncclGetUniqueId() # `list(unique_id.internal)` is something like this: # [34, -16, 23, 83, 109, -19, 59, 95, 2, 0, -86, 55, 10, -128, 0, 29, 0, # 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, # 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # as long as the function doesn't raise an exception, we're good assert unique_id is not None