/* * Modified by Neural Magic * Adapted from https://github.com/Vahe1994/AQLM * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include __global__ void Code1x16MatVec( const int4* __restrict__ A, const int4* __restrict__ B, int4* __restrict__ C, const int4* __restrict__ codebook, const int prob_m, const int prob_k, const int4 codebook_a_sizes, // cumulative sizes of A spanning each codebook, at most 3 long. const int codebook_stride // as int4. ) { int a_gl_stride = prob_k / 8 / 8; int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32); bool pred = a_gl_rd < prob_m; if (pred) { // advance to the correct codebook, this easy because we only multiply one column of the codebook. auto codebook_size = &codebook_a_sizes.x; while (a_gl_rd >= *codebook_size) { codebook += codebook_stride; ++codebook_size; } } int b_gl_rd = 0; int c_gl_wr = a_gl_rd; a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32; int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32; __shared__ int4 sh_b[32 * 9]; float res = 0; int iters = (prob_k / 8 + 8 * 32 - 1) / (8 * 32); while (iters--) { // We pad shared memory to avoid bank conflicts during reads __syncthreads(); for (int i = threadIdx.x; i < 32 * 8; i += blockDim.x) { if (b_gl_rd + i < prob_k / 8) sh_b[9 * (i / 8) + i % 8] = B[b_gl_rd + i]; } __syncthreads(); b_gl_rd += 32 * 8; int b_sh_rd = 9 * (threadIdx.x % 32); if (pred && a_gl_rd < a_gl_end) { const uint16_t* enc = reinterpret_cast(&A[a_gl_rd]); #pragma unroll for (int i = 0; i < 8; i++) { uint32_t dec[4]; // We bypass the L1 cache to avoid massive amounts of memory streaming that doesn't // actually help us; this brings > 2x speedup. asm volatile ( "ld.cg.global.v4.u32 {%0, %1, %2, %3}, [%4];" : "=r"(dec[0]), "=r"(dec[1]), "=r"(dec[2]), "=r"(dec[3]) : "l"((void*) &codebook[enc[i]]) ); half2* a = reinterpret_cast(&dec); half2* b = reinterpret_cast(&sh_b[b_sh_rd]); half2 res2 = {}; #pragma unroll for (int j = 0; j < 4; j++) res2 = __hfma2(a[j], b[j], res2); res += __half2float(res2.x) + __half2float(res2.y); b_sh_rd++; } a_gl_rd += 32; } } if (pred) { #pragma unroll for (int i = 16; i > 0; i /= 2) res += __shfl_down_sync(0xffffffff, res, i); if (threadIdx.x % 32 == 0) reinterpret_cast<__half*>(C)[c_gl_wr] = __float2half(res); } } __global__ void Code2x8MatVec( const int4* __restrict__ A, const int4* __restrict__ B, int4* __restrict__ C, const int4* __restrict__ codebook, int prob_m, int prob_k, const int4 codebook_a_sizes, // cumulative sizes of A spanning each codebook, at most 3 long. const int codebook_stride // as int4. ) { int a_gl_stride = prob_k / 8 / 8; int a_gl_rd = (blockDim.x / 32) * blockIdx.x + (threadIdx.x / 32); bool pred = a_gl_rd < prob_m; if (pred) { // advance to the correct codebook, this easy because we only multiply one column of the codebook. auto codebook_size = &codebook_a_sizes.x; while (a_gl_rd >= *codebook_size) { codebook += codebook_stride; ++codebook_size; } } int b_gl_rd = 0; int c_gl_wr = a_gl_rd; a_gl_rd = a_gl_stride * a_gl_rd + threadIdx.x % 32; int a_gl_end = a_gl_rd + a_gl_stride - threadIdx.x % 32; int lane = threadIdx.x % 8; extern __shared__ int4 sh[]; int4* sh_b = sh; int4* sh_code = sh_b + 32 * 9; int4* sh_code0 = sh_code; int4* sh_code1 = sh_code + 256 * 8; for (int i = threadIdx.x; i < 2 * 256; i += blockDim.x) { int4 dec = codebook[i]; #pragma unroll for (int j = 0; j < 8; j++) sh_code[8 * i + (j + lane) % 8] = dec; } __syncthreads(); float res = 0; int iters = (prob_k / 8 + 8 * 32 - 1) / (8 * 32); while (iters--) { // We pad shared memory to avoid bank conflicts during reads __syncthreads(); for (int i = threadIdx.x; i < 32 * 8; i += blockDim.x) { if (b_gl_rd + i < prob_k / 8) sh_b[9 * (i / 8) + i % 8] = B[b_gl_rd + i]; } __syncthreads(); b_gl_rd += 32 * 8; int b_sh_rd = 9 * (threadIdx.x % 32); if (pred && a_gl_rd < a_gl_end) { const uint8_t* enc = reinterpret_cast(&A[a_gl_rd]); #pragma unroll for (int i = 0; i < 8; i++) { half2* a0 = reinterpret_cast(&sh_code0[8 * enc[2 * i + 0] + lane]); half2* a1 = reinterpret_cast(&sh_code1[8 * enc[2 * i + 1] + lane]); half2* b = reinterpret_cast(&sh_b[b_sh_rd]); half2 res2 = {}; #pragma unroll for (int j = 0; j < 4; j++) res2 = __hfma2(__hadd2(a0[j], a1[j]), b[j], res2); res += __half2float(res2.x) + __half2float(res2.y); b_sh_rd++; } a_gl_rd += 32; } } if (pred) { #pragma unroll for (int i = 16; i > 0; i /= 2) res += __shfl_down_sync(0xffffffff, res, i); if (threadIdx.x % 32 == 0) reinterpret_cast<__half*>(C)[c_gl_wr] = __float2half(res); } } inline int ceildiv(int a, int b) { return (a + b - 1) / b; } const int THREAD_M = 16; void code1x16_matvec_cuda( const void* __restrict__ A, const void* __restrict__ B, void* __restrict__ C, const void* __restrict__ codebook, int prob_m, int prob_k, const int4 codebook_a_sizes, const int codebook_stride ) { int sms; cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0); int waves = 0; int thread_m; do { waves++; thread_m = ceildiv(prob_m, waves * sms); } while (thread_m > THREAD_M); int blocks = ceildiv(prob_m, thread_m); int threads = 32 * thread_m; cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream(); Code1x16MatVec<<>>( (const int4*) A, (const int4*) B, (int4*) C, (const int4*) codebook, prob_m, prob_k, codebook_a_sizes, codebook_stride ); } void code2x8_matvec_cuda( const void* __restrict__ A, const void* __restrict__ B, void* __restrict__ C, const void* __restrict__ codebook, int prob_m, int prob_k, const int4 codebook_a_sizes, const int codebook_stride ) { int sms; cudaDeviceGetAttribute(&sms, cudaDevAttrMultiProcessorCount, 0); int waves = 0; int thread_m; do { waves++; thread_m = ceildiv(prob_m, waves * sms); } while (thread_m > THREAD_M); int blocks = ceildiv(prob_m, thread_m); int threads = 32 * thread_m; int shared = 16 * (2 * 256 * 8 + 32 * 9); cudaFuncSetAttribute( Code2x8MatVec, cudaFuncAttributeMaxDynamicSharedMemorySize, shared ); cudaStream_t stream = at::cuda::getCurrentCUDAStream().stream(); Code2x8MatVec<<>>( (const int4*) A, (const int4*) B, (int4*) C, (const int4*) codebook, prob_m, prob_k, codebook_a_sizes, codebook_stride ); }