# coding=utf-8 # Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py # Copyright 2023 The PygmalionAI team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only GPT-NeoX model compatible with HuggingFace weights.""" from typing import List, Optional import torch from torch import nn from transformers import GPTNeoXConfig from aphrodite.attention import Attention, AttentionMetadata from aphrodite.modeling.layers.activation import get_act_fn from aphrodite.modeling.layers.linear import ( ColumnParallelLinear, LinearMethodBase, QKVParallelLinear, RowParallelLinear, ) from aphrodite.modeling.layers.rotary_embedding import get_rope from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.layers.vocab_parallel_embedding import ( VocabParallelEmbedding, ParallelLMHead, ) from aphrodite.distributed import ( get_tensor_model_parallel_world_size, ) from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.modeling.hf_downloader import ( default_weight_loader, hf_model_weights_iterator, ) from aphrodite.common.sequence import SamplerOutput class GPTNeoXAttention(nn.Module): def __init__( self, config: GPTNeoXConfig, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.total_num_heads = config.num_attention_heads self.hidden_size = config.hidden_size self.head_size = self.hidden_size // self.total_num_heads self.bias = getattr(config, "attention_bias", True) tensor_model_parallel_world_size = ( get_tensor_model_parallel_world_size()) assert self.total_num_heads % tensor_model_parallel_world_size == 0 self.num_heads = (self.total_num_heads // tensor_model_parallel_world_size) self.query_key_value = QKVParallelLinear( config.hidden_size, self.head_size, self.total_num_heads, bias=self.bias, linear_method=linear_method, ) self.dense = RowParallelLinear( config.hidden_size, config.hidden_size, bias=self.bias, linear_method=linear_method, ) scaling = self.head_size**-0.5 rotary_dim = int(self.head_size * config.rotary_pct) assert rotary_dim % 2 == 0 rope_theta = getattr(config, "rope_theta", 10000) max_position_embeddings = getattr(config, "max_position_embeddings", 8192) self.rotary_emb = get_rope( self.head_size, rotary_dim=rotary_dim, max_position=max_position_embeddings, base=rope_theta, is_neox_style=True, ) self.attn = Attention(self.num_heads, self.head_size, scaling) def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: qkv, _ = self.query_key_value(hidden_states) q, k, v = qkv.chunk(chunks=3, dim=-1) q, k = self.rotary_emb(position_ids, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata) output, _ = self.dense(attn_output) return output class GPTNeoXMLP(nn.Module): def __init__( self, config: GPTNeoXConfig, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.dense_h_to_4h = ColumnParallelLinear( config.hidden_size, config.intermediate_size, linear_method=linear_method, ) self.dense_4h_to_h = RowParallelLinear( config.intermediate_size, config.hidden_size, linear_method=linear_method, ) quant_config = getattr(linear_method, "quant_config", None) self.act = get_act_fn(config.hidden_act, quant_config, config.intermediate_size) def forward(self, hidden_states): hidden_states, _ = self.dense_h_to_4h(hidden_states) hidden_states = self.act(hidden_states) hidden_states, _ = self.dense_4h_to_h(hidden_states) return hidden_states class GPTNeoXLayer(nn.Module): def __init__( self, config: GPTNeoXConfig, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.use_parallel_residual = config.use_parallel_residual self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attention = GPTNeoXAttention(config, linear_method) self.mlp = GPTNeoXMLP(config, linear_method) def forward( self, position_ids: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, ) -> torch.Tensor: attn_input = self.input_layernorm(hidden_states) attn_output = self.attention( position_ids=position_ids, hidden_states=attn_input, kv_cache=kv_cache, attn_metadata=attn_metadata, ) if self.use_parallel_residual: # pseudocode: # x = x + attn(ln1(x)) + mlp(ln2(x)) mlp_input = self.post_attention_layernorm(hidden_states) mlp_output = self.mlp(mlp_input) hidden_states = mlp_output + attn_output + hidden_states else: # pseudocode: # x = x + attn(ln1(x)) # x = x + mlp(ln2(x)) attn_output = attn_output + hidden_states mlp_input = self.post_attention_layernorm(attn_output) mlp_output = self.mlp(mlp_input) hidden_states = mlp_output + attn_output return hidden_states class GPTNeoXModel(nn.Module): def __init__( self, config: GPTNeoXConfig, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.config = config self.embed_in = VocabParallelEmbedding(config.vocab_size, config.hidden_size, linear_method=linear_method) self.layers = nn.ModuleList([ GPTNeoXLayer(config, linear_method) for _ in range(config.num_hidden_layers) ]) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.embed_in(input_ids) for i in range(len(self.layers)): layer = self.layers[i] hidden_states = layer( position_ids, hidden_states, kv_caches[i], attn_metadata, ) hidden_states = self.final_layer_norm(hidden_states) return hidden_states class GPTNeoXForCausalLM(nn.Module): def __init__( self, config, linear_method: Optional[LinearMethodBase] = None, ): super().__init__() self.config = config self.linear_method = linear_method self.gpt_neox = GPTNeoXModel(config, linear_method) self.embed_out = ParallelLMHead(config.vocab_size, config.hidden_size, linear_method=linear_method) self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = Sampler() def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, ) -> torch.Tensor: hidden_states = self.gpt_neox(input_ids, positions, kv_caches, attn_metadata) return hidden_states def compute_logits(self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> torch.Tensor: logits = self.logits_processor(self.embed_out, hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights( self, model_name_or_path: str, cache_dir: Optional[str] = None, load_format: str = "auto", revision: Optional[str] = None, ): params_dict = dict(self.named_parameters()) for name, loaded_weight in hf_model_weights_iterator( model_name_or_path, cache_dir, load_format, revision, self.config): if ("attention.bias" in name or "attention.masked_bias" in name or "rotary_emb.inv_freq" in name): continue if ("rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name): # Models trained using OpenRLHF may include # these tensors in the checkpoint. Skip them. continue param = params_dict[name] if "query_key_value" in name: # NOTE: GPT-NeoX's fused QKV's output_dim has the shape of # (num_heads * 3 * head_size), while the # required shape is (3 * num_heads * head_size). # Thus, we need weight conversion. output_dim = getattr(param, "output_dim", None) num_heads = self.config.num_attention_heads if output_dim is not None: loaded_weight_shape = loaded_weight.shape loaded_weight = loaded_weight.view( loaded_weight_shape[:output_dim] + (num_heads, 3, -1) + loaded_weight_shape[output_dim + 1:]) loaded_weight = loaded_weight.transpose( output_dim, output_dim + 1) loaded_weight = loaded_weight.reshape(loaded_weight_shape) weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)