from typing import List, Optional from aphrodite.common.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig, ModelConfig, MultiModalConfig, ParallelConfig, PromptAdapterConfig, SchedulerConfig) from aphrodite.common.sequence import SequenceGroupMetadata from aphrodite.task_handler.model_runner import ( ModelInputForGPUWithSamplingMetadata, ModelRunner) class TargetModelRunner(ModelRunner): """Specialized model runner for speculative decoding target model. In speculative decoding, the log probabilities selected finally may not be the same ones as selected by the target model sampling. This means that the time spent in the log probability calculation of the target model is time wasted, since we calculate log probabilities after deciding which tokens are accepted. For this reason disabling log probabilities in the target model will make decode faster. The model runner sets the SamplingMetadata parameters according to whether log probabilities are requested or not. """ def __init__(self, model_config: ModelConfig, parallel_config: ParallelConfig, scheduler_config: SchedulerConfig, device_config: DeviceConfig, cache_config: CacheConfig, load_config: LoadConfig, lora_config: Optional[LoRAConfig], kv_cache_dtype: Optional[str] = "auto", is_driver_worker: bool = False, prompt_adapter_config: Optional[PromptAdapterConfig] = None, multimodal_config: Optional[MultiModalConfig] = None, return_hidden_states: bool = False, **kwargs): # An internal boolean member variable to indicate if token log # probabilities are needed or not. self.disable_logprobs = True super().__init__( model_config=model_config, parallel_config=parallel_config, scheduler_config=scheduler_config, device_config=device_config, cache_config=cache_config, load_config=load_config, lora_config=lora_config, kv_cache_dtype=kv_cache_dtype, is_driver_worker=is_driver_worker, multimodal_config=multimodal_config, prompt_adapter_config=prompt_adapter_config, return_hidden_states=return_hidden_states, **kwargs, ) def prepare_model_input( self, seq_group_metadata_list: List[SequenceGroupMetadata], virtual_engine: int = 0, finished_requests_ids: Optional[List[str]] = None ) -> ModelInputForGPUWithSamplingMetadata: model_input: ModelInputForGPUWithSamplingMetadata = super( ).prepare_model_input(seq_group_metadata_list, virtual_engine, finished_requests_ids) # If token log probabilities is disabled then skip generating sampler # CPU output. We directly serialize the GPU sampled_token_id tensors # as needed. If log probabilities is enabled then synchronize all the # sampling related tensors which includes the logprobs tensors. model_input.sampling_metadata.skip_sampler_cpu_output = ( self.disable_logprobs) return model_input