from typing import Iterable, List, Literal, Optional, Tuple, TypedDict import torch import torch.nn as nn from transformers import (Blip2Config, Blip2QFormerConfig, Blip2VisionConfig, apply_chunking_to_forward) from aphrodite.attention import AttentionMetadata from aphrodite.common.config import CacheConfig, MultiModalConfig from aphrodite.common.sequence import (IntermediateTensors, SamplerOutput, SequenceData) from aphrodite.inputs import INPUT_REGISTRY, InputContext, LLMInputs from aphrodite.modeling.layers.activation import get_act_fn from aphrodite.modeling.layers.logits_processor import LogitsProcessor from aphrodite.modeling.layers.sampler import Sampler from aphrodite.modeling.model_loader.weight_utils import default_weight_loader from aphrodite.modeling.models.opt import OPTModel from aphrodite.modeling.sampling_metadata import SamplingMetadata from aphrodite.multimodal import MULTIMODAL_REGISTRY from aphrodite.quantization import QuantizationConfig from .blip import (BlipVisionModel, dummy_image_for_blip, get_max_blip_image_tokens) from .interfaces import SupportsVision from .utils import merge_vision_embeddings _KEYS_TO_MODIFY_MAPPING = { "language_model.lm_head": "lm_head", "language_model.model": "language_model", } class Blip2QFormerMultiHeadAttention(nn.Module): def __init__( self, config: Blip2QFormerConfig, *, quant_config: Optional[QuantizationConfig], cache_config: Optional[CacheConfig], is_cross_attention: bool = False, ) -> None: super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of " f"the number of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = (config.hidden_size // config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.scaling = self.attention_head_size**-0.5 self.query = nn.Linear(config.hidden_size, self.all_head_size) if is_cross_attention: kv_hidden_size = config.encoder_hidden_size else: kv_hidden_size = config.hidden_size self.key = nn.Linear(kv_hidden_size, self.all_head_size) self.value = nn.Linear(kv_hidden_size, self.all_head_size) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type != "absolute": raise NotImplementedError("Unsupported position_embedding_type: " f"{self.position_embedding_type}") self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): x = x.view(*x.size()[:-1], self.num_attention_heads, self.attention_head_size) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, ): is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.transpose_for_scores( self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores( self.value(encoder_hidden_states)) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) mixed_query_layer = self.query(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_probs = torch.softmax(attention_scores * self.scaling, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs_dropped = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs_dropped, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() context_layer = context_layer.view(*context_layer.size()[:-2], self.all_head_size) return context_layer class Blip2QFormerSelfOutput(nn.Module): def __init__(self, config: Blip2QFormerConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, ) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class Blip2QFormerAttention(nn.Module): def __init__( self, config: Blip2QFormerConfig, *, quant_config: Optional[QuantizationConfig], cache_config: Optional[CacheConfig], is_cross_attention: bool = False, ) -> None: super().__init__() self.attention = Blip2QFormerMultiHeadAttention( config, quant_config=quant_config, cache_config=cache_config, is_cross_attention=is_cross_attention, ) self.output = Blip2QFormerSelfOutput(config) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, ) -> Tuple[torch.Tensor]: self_output = self.attention( hidden_states, encoder_hidden_states=encoder_hidden_states, ) attention_output = self.output(self_output, hidden_states) return attention_output class Blip2QFormerIntermediate(nn.Module): def __init__(self, config: Blip2QFormerConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) self.intermediate_act_fn = get_act_fn(config.hidden_act) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class Blip2QFormerOutput(nn.Module): def __init__(self, config: Blip2QFormerConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, ) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class Blip2QFormerLayer(nn.Module): def __init__( self, config: Blip2QFormerConfig, *, quant_config: Optional[QuantizationConfig], cache_config: Optional[CacheConfig], layer_idx: int, ) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = Blip2QFormerAttention(config, quant_config=quant_config, cache_config=cache_config) self.layer_idx = layer_idx if layer_idx % config.cross_attention_frequency == 0: self.crossattention = Blip2QFormerAttention( config, quant_config=quant_config, cache_config=cache_config, is_cross_attention=True) self.has_cross_attention = True else: self.has_cross_attention = False self.intermediate_query = Blip2QFormerIntermediate(config) self.output_query = Blip2QFormerOutput(config) def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, query_length: int, ): attention_output = self.attention(hidden_states) if query_length > 0: query_attention_output = attention_output[:, :query_length, :] if self.has_cross_attention: query_attention_output = self.crossattention( query_attention_output, encoder_hidden_states=encoder_hidden_states, ) layer_output = apply_chunking_to_forward( self.feed_forward_chunk_query, self.chunk_size_feed_forward, self.seq_len_dim, query_attention_output, ) if attention_output.shape[1] > query_length: layer_output_text = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output[:, query_length:, :], ) layer_output = torch.cat([layer_output, layer_output_text], dim=1) else: layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) return layer_output def feed_forward_chunk(self, attention_output: torch.Tensor) -> torch.Tensor: intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def feed_forward_chunk_query( self, attention_output: torch.Tensor) -> torch.Tensor: intermediate_output = self.intermediate_query(attention_output) layer_output = self.output_query(intermediate_output, attention_output) return layer_output class Blip2QFormerEncoder(nn.Module): def __init__( self, config: Blip2QFormerConfig, *, quant_config: Optional[QuantizationConfig], cache_config: Optional[CacheConfig], ) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ Blip2QFormerLayer(config, quant_config=quant_config, cache_config=cache_config, layer_idx=layer_idx) for layer_idx in range(config.num_hidden_layers) ]) def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, query_length: int, ) -> torch.Tensor: for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] hidden_states = layer_module( hidden_states, encoder_hidden_states=encoder_hidden_states, query_length=query_length, ) return hidden_states # Adapted from https://github.com/huggingface/transformers/blob/v4.41.2/src/transformers/models/blip_2/modeling_blip_2.py#L1025 class Blip2QFormerModel(nn.Module): def __init__( self, config: Blip2QFormerConfig, *, quant_config: Optional[QuantizationConfig], cache_config: Optional[CacheConfig], ) -> None: super().__init__() self.config = config self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.encoder = Blip2QFormerEncoder(config, quant_config=quant_config, cache_config=cache_config) def forward( self, query_embeds: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, ) -> torch.Tensor: query_length = query_embeds.shape[1] embedding_output = self.layernorm(query_embeds) embedding_output = self.dropout(embedding_output) sequence_output = self.encoder( embedding_output, encoder_hidden_states=encoder_hidden_states, query_length=query_length, ) return sequence_output class Blip2ImagePixelInputs(TypedDict): type: Literal["pixel_values"] data: torch.Tensor """Shape: (batch_size, num_channels, height, width)""" Blip2ImageInputs = Blip2ImagePixelInputs # We use this internally as placeholders since there is no image token # defined on the HuggingFace repo BLIP2_IMAGE_TOKEN = "" BLIP2_IMAGE_TOKEN_ID = 50265 def get_blip2_image_feature_size(hf_config: Blip2Config) -> int: return hf_config.num_query_tokens def get_max_blip2_image_tokens(ctx: InputContext): hf_config = ctx.get_hf_config(Blip2Config) vision_config = hf_config.vision_config if isinstance(vision_config, Blip2VisionConfig): return get_max_blip_image_tokens(vision_config) msg = f"Unsupported vision config: {type(vision_config)}" raise NotImplementedError(msg) def dummy_data_for_blip2(ctx: InputContext, seq_len: int): hf_config = ctx.get_hf_config(Blip2Config) vision_config = hf_config.vision_config image_feature_size = get_blip2_image_feature_size(hf_config) token_ids = [BLIP2_IMAGE_TOKEN_ID] * image_feature_size token_ids += [0] * (seq_len - image_feature_size) seq_data = SequenceData(token_ids) if isinstance(vision_config, Blip2VisionConfig): mm_data = dummy_image_for_blip(vision_config) return seq_data, mm_data msg = f"Unsupported vision config: {type(vision_config)}" raise NotImplementedError(msg) def input_processor_for_blip2(ctx: InputContext, llm_inputs: LLMInputs): multi_modal_data = llm_inputs.get("multi_modal_data") if multi_modal_data is None or "image" not in multi_modal_data: return llm_inputs hf_config = ctx.get_hf_config(Blip2Config) image_feature_size = get_blip2_image_feature_size(hf_config) # The original model places image tokens at the front # https://github.com/huggingface/transformers/blob/v4.41.2/src/transformers/models/blip_2/modeling_blip_2.py#L1514 new_token_ids = [BLIP2_IMAGE_TOKEN_ID] * image_feature_size new_token_ids += llm_inputs["prompt_token_ids"] new_prompt = llm_inputs.get("prompt") if new_prompt is not None: new_prompt = BLIP2_IMAGE_TOKEN * image_feature_size + new_prompt return LLMInputs(prompt_token_ids=new_token_ids, prompt=new_prompt, multi_modal_data=multi_modal_data) @MULTIMODAL_REGISTRY.register_image_input_mapper() @MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_blip2_image_tokens) @INPUT_REGISTRY.register_dummy_data(dummy_data_for_blip2) @INPUT_REGISTRY.register_input_processor(input_processor_for_blip2) class Blip2ForConditionalGeneration(nn.Module, SupportsVision): def __init__(self, config: Blip2Config, multimodal_config: MultiModalConfig, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None) -> None: super().__init__() self.config = config self.multimodal_config = multimodal_config # TODO: Optionally initializes this for supporting embeddings. self.vision_model = BlipVisionModel(config.vision_config) self.query_tokens = nn.Parameter( torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) self.qformer = Blip2QFormerModel(config.qformer_config, cache_config=cache_config, quant_config=quant_config) self.language_projection = nn.Linear( config.qformer_config.hidden_size, config.text_config.hidden_size, bias=True, ) self.quant_config = quant_config self.language_model = OPTModel(config.text_config, cache_config, quant_config) self.unpadded_vocab_size = config.text_config.vocab_size self.logits_processor = LogitsProcessor(self.unpadded_vocab_size) self.sampler = Sampler() def get_lm_head(self): return self.language_model.decoder.embed_tokens def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor: h = w = self.config.vision_config.image_size expected_dims = (3, h, w) actual_dims = tuple(data.shape[1:]) if actual_dims != expected_dims: expected_expr = ("batch_size", *map(str, expected_dims)) raise ValueError( f"The expected shape of pixel values is {expected_expr}. " f"You supplied {tuple(data.shape)}.") return data def _parse_and_validate_image_input( self, **kwargs: object) -> Optional[Blip2ImageInputs]: pixel_values = kwargs.pop("pixel_values", None) if pixel_values is None: return None if not isinstance(pixel_values, torch.Tensor): raise ValueError("Incorrect type of pixel values. " f"Got type: {type(pixel_values)}") return Blip2ImagePixelInputs( type="pixel_values", data=self._validate_pixel_values(pixel_values), ) def _image_pixels_to_features(self, vision_model: BlipVisionModel, pixel_values: torch.Tensor) -> torch.Tensor: # NOTE: we skip the step to select the vision feature layer since # this is already done inside the vision tower image_features = vision_model(pixel_values) return image_features def _process_image_pixels(self, inputs: Blip2ImagePixelInputs) -> torch.Tensor: assert self.vision_model is not None pixel_values = inputs["data"] return self._image_pixels_to_features(self.vision_model, pixel_values) def _process_image_input(self, image_input: Blip2ImageInputs) -> torch.Tensor: assert self.vision_model is not None image_features = self._process_image_pixels(image_input) query_tokens = self.query_tokens.expand(image_features.shape[0], -1, -1) query_output = self.qformer( query_embeds=query_tokens, encoder_hidden_states=image_features, ) return self.language_projection(query_output) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, **kwargs: object, ) -> SamplerOutput: """Run forward pass for BLIP-2. One key thing to understand is the `input_ids` already accounts for the positions of the to-be-inserted image embeddings. Concretely, consider a text prompt: `"Question: What's the content of the image? Answer:"`. Tokenizer outputs: `[2, 45641, 35, 653, 18, 5, 1383, 9, 5, 2274, 116, 31652, 35]`. To reserve space in KV cache, we have to insert placeholder tokens before they are inputted to the model, so the input processor prepends dummy tokens (denoted as `50265`), resulting in: `[50265, ..., 50265, 2, 45641, 35, ..., 31652, 35]`. We insert 32 tokens since it corresponds to the number of query embeddings outputted by the Q-Former and inputted to the language model. This way, the `positions` and `attn_metadata` are consistent with the `input_ids`. Args: input_ids: Flattened (concatenated) input_ids corresponding to a batch. pixel_values: The pixels in each input image. See also: :class:`Blip2ImageInputs` """ image_input = self._parse_and_validate_image_input(**kwargs) if image_input is not None: vision_embeddings = self._process_image_input(image_input) inputs_embeds = self.language_model.get_input_embeddings(input_ids) inputs_embeds = merge_vision_embeddings(input_ids, inputs_embeds, vision_embeddings, BLIP2_IMAGE_TOKEN_ID) input_ids = None else: inputs_embeds = None hidden_states = self.language_model(input_ids, positions, kv_caches, attn_metadata, inputs_embeds=inputs_embeds) return hidden_states def compute_logits(self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata) -> torch.Tensor: logits = self.logits_processor(self.get_lm_head(), hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): # only doing this for language model part for now. stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters()) for name, loaded_weight in weights: if "lm_head.weight" in name: continue if "rotary_emb.inv_freq" in name: continue for key_to_modify, new_key in _KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in name: name = name.replace(key_to_modify, new_key) use_default_weight_loading = False if "vision" in name: if self.vision_model is not None: # We only do sharding for language model and # not vision model for now. use_default_weight_loading = True else: for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue param = params_dict[name.replace(weight_name, param_name)] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: use_default_weight_loading = True if use_default_weight_loading: param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight)