import torch from aphrodite.common.utils import print_warning_once from aphrodite.quantization.base_config import (QuantizationConfig, QuantizeMethodBase) class BaseKVCacheMethod(QuantizeMethodBase): """ Quant method that adds `_k_scale` and `_v_scale` attributes to the Attention layer to support loading those scaling factors from checkpoints. The k/v_scale will be used to: - quantize k/v_cache entries before saving them to the cache - dequantize k/v_cache entries before fetching them from the cache :param quant_config: the appropriate QuantizationConfig """ def __init__(self, quant_config: QuantizationConfig): self.quant_config = quant_config def create_weights(self, layer: torch.nn.Module): """ Create "weight" (aka k_scale and v_scale) for an attention layer. """ # Initialize the KV cache scales to -1.0, which is an invalid value. # If the k/v_scale appears in the checkpoint, it will be # overwritten when loading weights. layer.k_scale = torch.nn.Parameter(torch.tensor(-1.0), requires_grad=False) layer.v_scale = torch.nn.Parameter(torch.tensor(-1.0), requires_grad=False) def apply(self, layer: torch.nn.Module) -> torch.Tensor: raise RuntimeError( f"{self.__class__.__name__}.apply should not be called.") def process_weights_after_loading(self, layer: torch.nn.Module) -> None: # If the kv-cache dtype is auto, we enforce the k/v_scale to be 1.0 # regardless whether the kv-scale is available in the checkpoint. if layer.kv_cache_dtype != "auto": if layer.k_scale > 0.0 and layer.v_scale > 0.0: # We prefer to use separate k_scale and v_scale if present k_scale = layer.k_scale.to("cpu").tolist() v_scale = layer.v_scale.to("cpu").tolist() elif layer.k_scale < 0.0 and layer.v_scale < 0.0: # If no scales were loaded (both scales are invalid negative # values), use the default value of 1.0 k_scale = 1.0 v_scale = 1.0 else: # If we find a single kv_scale in the checkpoint, we remap # kv_scale to k_scale during weight loading, and duplicate # k_scale to v_scale here assert layer.k_scale > 0.0 scale_to_duplicate = max(layer.k_scale, layer.v_scale) k_scale = scale_to_duplicate.to("cpu").tolist() v_scale = scale_to_duplicate.to("cpu").tolist() if not isinstance(k_scale, float) or not isinstance( v_scale, float): raise ValueError("Only support per-tensor scaling factor " "for fp8 KV cache") # These are used in the final Attention.forward() layer._k_scale = k_scale layer._v_scale = v_scale if (layer._k_scale == 1.0 and layer._v_scale == 1.0 and "e5m2" not in layer.kv_cache_dtype): print_warning_once( "Using KV cache scaling factor 1.0 for fp8_e4m3. This " "may cause accuracy issues. Please make sure k/v_scale " "scaling factors are available in the fp8 checkpoint.") del layer.k_scale del layer.v_scale