import functools import importlib from typing import Dict, List, Optional, Tuple, Type import torch.nn as nn from loguru import logger from aphrodite.common.utils import is_hip # Architecture -> (module, class). _GENERATION_MODELS = { "AquilaModel": ("llama", "LlamaForCausalLM"), "AquilaForCausalLM": ("llama", "LlamaForCausalLM"), # AquilaChat2 "BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"), # baichuan-7b "BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"), # baichuan-13b "BloomForCausalLM": ("bloom", "BloomForCausalLM"), "Blip2ForConditionalGeneration": ("blip2", "Blip2ForConditionalGeneration"), "ChatGLMModel": ("chatglm", "ChatGLMForCausalLM"), "ChatGLMForConditionalGeneration": ("chatglm", "ChatGLMForCausalLM"), "CohereForCausalLM": ("commandr", "CohereForCausalLM"), "DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"), "DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"), "DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"), "DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"), "FalconForCausalLM": ("falcon", "FalconForCausalLM"), "GemmaForCausalLM": ("gemma", "GemmaForCausalLM"), "Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"), "GPT2LMHeadModel": ("gpt2", "GPT2LMHeadModel"), "GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"), "GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"), "GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"), "InternLMForCausalLM": ("llama", "LlamaForCausalLM"), "InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"), "InternVLChatModel": ("internvl", "InternVLChatModel"), "JAISLMHeadModel": ("jais", "JAISLMHeadModel"), "LlamaForCausalLM": ("llama", "LlamaForCausalLM"), "LlavaForConditionalGeneration": ("llava", "LlavaForConditionalGeneration"), "LlavaNextForConditionalGeneration": ("llava_next", "LlavaNextForConditionalGeneration"), # For decapoda-research/llama-* "LLaMAForCausalLM": ("llama", "LlamaForCausalLM"), "MistralForCausalLM": ("llama", "LlamaForCausalLM"), "MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"), "QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"), # transformers's mpt class has lower case "MptForCausalLM": ("mpt", "MPTForCausalLM"), "MPTForCausalLM": ("mpt", "MPTForCausalLM"), "MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"), "MiniCPMV": ("minicpmv", "MiniCPMV"), "NemotronForCausalLM": ("nemotron", "NemotronForCausalLM"), "OlmoForCausalLM": ("olmo", "OlmoForCausalLM"), "OPTForCausalLM": ("opt", "OPTForCausalLM"), "OrionForCausalLM": ("orion", "OrionForCausalLM"), "PaliGemmaForConditionalGeneration": ("paligemma", "PaliGemmaForConditionalGeneration"), "PhiForCausalLM": ("phi", "PhiForCausalLM"), "Phi3ForCausalLM": ("llama", "LlamaForCausalLM"), "Phi3VForCausalLM": ("phi3v", "Phi3VForCausalLM"), "QWenLMHeadModel": ("qwen", "QWenLMHeadModel"), "Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"), "Qwen2MoeForCausalLM": ("qwen2_moe", "Qwen2MoeForCausalLM"), "RWForCausalLM": ("falcon", "FalconForCausalLM"), "StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"), "StableLmForCausalLM": ("stablelm", "StablelmForCausalLM"), "Starcoder2ForCausalLM": ("starcoder2", "Starcoder2ForCausalLM"), "ArcticForCausalLM": ("arctic", "ArcticForCausalLM"), "XverseForCausalLM": ("xverse", "XverseForCausalLM"), "Phi3SmallForCausalLM": ("phi3_small", "Phi3SmallForCausalLM"), "MLPSpeculatorPreTrainedModel": ("mlp_speculator", "MLPSpeculator"), "JambaForCausalLM": ("jamba", "JambaForCausalLM"), "MambaForCausalLM": ("mamba", "MambaForCausalLM"), "MedusaModel": ("medusa", "Medusa"), "FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"), "PersimmonForCausalLM": ("persimmon", "PersimmonForCausalLM"), "ChameleonForConditionalGeneration": ("chameleon", "ChameleonForConditionalGeneration"), "SolarForCausalLM": ("solar", "SolarForCausalLM"), "ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"), } _EMBEDDING_MODELS = { "MistralModel": ("llama_embedding", "LlamaEmbeddingModel"), } _CONDITIONAL_GENERATION_MODELS = { "BartModel": ("bart", "BartForConditionalGeneration"), "BartForConditionalGeneration": ("bart", "BartForConditionalGeneration"), } _MODELS = { **_GENERATION_MODELS, **_EMBEDDING_MODELS, **_CONDITIONAL_GENERATION_MODELS } # Architecture -> type. # out of tree models _OOT_MODELS: Dict[str, Type[nn.Module]] = {} # Models not supported by ROCm. _ROCM_UNSUPPORTED_MODELS = [] # Models partially supported by ROCm. # Architecture -> Reason. _ROCM_SWA_REASON = ("Sliding window attention (SWA) is not yet supported in " "Triton flash attention. For half-precision SWA support, " "please use CK flash attention by setting " "`APHRODITE_USE_TRITON_FLASH_ATTN=0`") _ROCM_PARTIALLY_SUPPORTED_MODELS: Dict[str, str] = { "Qwen2ForCausalLM": _ROCM_SWA_REASON, "MistralForCausalLM": _ROCM_SWA_REASON, "MixtralForCausalLM": _ROCM_SWA_REASON, "PaliGemmaForConditionalGeneration": ("ROCm flash attention does not yet " "fully support 32-bit precision on PaliGemma"), "Phi3VForCausalLM": ("ROCm Triton flash attention may run into compilation errors due to " "excessive use of shared memory. If this happens, disable Triton FA " "by setting `APHRODITE_USE_TRITON_FLASH_ATTN=0`") } class ModelRegistry: @staticmethod @functools.lru_cache(maxsize=128) def _get_model(model_arch: str): module_name, model_cls_name = _MODELS[model_arch] module = importlib.import_module( f"aphrodite.modeling.models.{module_name}") return getattr(module, model_cls_name, None) @staticmethod def _try_load_model_cls(model_arch: str) -> Optional[Type[nn.Module]]: if model_arch in _OOT_MODELS: return _OOT_MODELS[model_arch] if model_arch not in _MODELS: return None if is_hip(): if model_arch in _ROCM_UNSUPPORTED_MODELS: raise ValueError( f"Model architecture {model_arch} is not supported by " "ROCm for now.") if model_arch in _ROCM_PARTIALLY_SUPPORTED_MODELS: logger.warning( f"Model architecture {model_arch} is partially " "supported by ROCm: " f"{_ROCM_PARTIALLY_SUPPORTED_MODELS[model_arch]}") return ModelRegistry._get_model(model_arch) @staticmethod def resolve_model_cls( architectures: List[str]) -> Tuple[Type[nn.Module], str]: for arch in architectures: model_cls = ModelRegistry._try_load_model_cls(arch) if model_cls is not None: return (model_cls, arch) raise ValueError( f"Model architectures {architectures} are not supported for now. " f"Supported architectures: {ModelRegistry.get_supported_archs()}") @staticmethod def get_supported_archs() -> List[str]: return list(_MODELS.keys()) + list(_OOT_MODELS.keys()) @staticmethod def register_model(model_arch: str, model_cls: Type[nn.Module]): if model_arch in _MODELS: logger.warning(f"Model architecture {model_arch} is already " "registered, and will be overwritten by the new " f"model class {model_cls.__name__}.") global _OOT_MODELS _OOT_MODELS[model_arch] = model_cls @staticmethod def is_embedding_model(model_arch: str) -> bool: return model_arch in _EMBEDDING_MODELS __all__ = [ "ModelRegistry", ]